Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Ida Storgaard

and 8 more

The objective of this study was to develop a population pharmacokinetic-pharmacodynamic model of subcutaneously administered bupivacaine in a novel extended release microparticle formulation for postoperative pain management. Bupivacaine was administered subcutaneously in the lower leg to 28 healthy male subjects in doses from 150 to 600 mg in a phase 1 randomized, placebo-controlled, double-blind, dose-ascending study with two different compositions of microparticle formulations called LIQ865. Population pharmacokinetic-pharmacodynamic models were fitted to plasma concentration-effect-time data using non-linear mixed-effects modeling. The pharmacokinetics were best described by a two-compartment model with biphasic absorption as two parallel absorption processes: a fast, zero-order process and a slower, first-order process with two transit compartments. The slow absorption process was found to be dose-dependent and rate-limiting for bupivacaine clearance at higher doses. Bupivacaine clearance and the transit rate constant describing the slow absorption process both decreased with increasing doses following a power function with a shared covariate effect of dose on the two parameters. The pharmacokinetic-pharmacodynamic relationship between plasma concentrations and effect was best described by a linear function. This model gives new insight into the pharmacokinetics and pharmacodynamics of microparticle formulations of bupivacaine, and the biphasic absorption seen for several local anesthetics.