Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Dong-Ping Wang

and 9 more

Background and Purpose: The ionotropic purinergic trimeric receptor P2X3 is a new drug target other than the opioid receptor for the treatment of refractory chronic cough (RCC). However, the only marketed P2X3 antagonist, Gefapixant/AF-219, has a side effect of taste disorders due to simultaneous action on the human P2X2/3 (hP2X2/3) heterotrimer. Therefore, selective molecules with high affinity for the hP2X3 homotrimer and low affinity for the hP2X2/3 heterotrimer have potential in iteration 2.0 RCC drug development, such as Sivopixant/S-600918, a clinical phase II RCC candidate with lower taste disturbance than Gefapixant. S-600918 and its analogue (3-(4-((3-chloro-4-isopropoxyphenyl)amino)-3-(4-methylbenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl)propanoic acid (DDTPA) exhibit both high affinity and high selectivity for hP2X3 homotrimers compared to hP2X2/3 heterotrimer. The mechanism of its druggable site and this high selectivity is not clear. Experimental Approach: Here, we reveal a novel allosteric mechanism that distinguishes this drug candidate from other P2X3 inhibitors through chimera construction, site covalent occupation, metadynamics, mutagenesis, and electrophysiology. Key Results: We suggest that the tri-symmetric site adjacent to the upper vestibule determines the high affinity and selectivity of S-600918/DDTPA for hP2X3. Only four amino acids of the hP2X2 upper body domain swapped with hP2X3, allow the hP2X2/3 heterotrimer to gain comparable affinity for S-600918/DDTPA as the hP2X3 homotrimer. Conclusion and Implications: Thus, we have revealed the molecular basis for the cough suppressive effects and reduced side effects of new RCC clinical candidates from the perspective of receptor-ligand recognition, which may provide information critical for the development of new drugs targeting P2X3 for indications such as RCC, idiopathic pulmonary fibrosis (IPF), and primary hypertension.