Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Karolis Petkevicius

and 15 more

The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. Fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened individually and in combinations. A titer of 29.2±1.6 mg/L Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene’s overexpression led to a further 1.5-fold titer increase. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1±13.4 mg/L of Z11-14:OH was obtained. Fatty alcohols were chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis at a level similar to that of the chemically synthesized pheromone used as a control, although full precopulatory behavior was observed less often. The study paves the way for the production of ECB pheromone by fermentation.