References
1. Geyer, R., Production, use, and fate of synthetic polymers, inPlastic waste and recycling . 2020, Elsevier. 13-32.
2. Haque, F.M., J.S. Ishibashi, C.A. Lidston, H. Shao, F.S. Bates, A.B.
Chang, G.W. Coates, C.J. Cramer, P.J. Dauenhauer, and W.R. Dichtel,
Defining the macromolecules of tomorrow through synergistic sustainable
polymer research. Chemical Reviews . 2022;122(6):6322-6373.
3. Ikada, Y. and H. Tsuji, Biodegradable polyesters for medical and
ecological applications. Macromolecular Rapid
Communications . 2000;21(3):117-132.
4. Williams, C.K., Synthesis of functionalized biodegradable
polyesters. Chemical Society Reviews .
2007;36(10):1573-1580.
5. Larrañaga, A. and E. Lizundia, A review on the thermomechanical
properties and biodegradation behaviour of polyesters.European Polymer Journal . 2019;121:109296.
6. Pang, K., R. Kotek, and A. Tonelli, Review of conventional and novel
polymerization processes for polyesters. Progress in
Polymer Science . 2006;31(11):1009-1037.
7. Edlund, U. and A.-C. Albertsson, Polyesters based on diacid
monomers. Advanced Drug Delivery Reviews .
2003;55(4):585-609.
8. Sanford, M.J., L. Pena Carrodeguas, N.J. Van Zee, A.W. Kleij, and
G.W. Coates, Alternating copolymerization of propylene oxide and
cyclohexene oxide with tricyclic anhydrides: access to partially
renewable aliphatic polyesters with high glass transition
temperatures. Macromolecules . 2016;49(17):6394-6400.
9. Mankar, S.V., M.N. Garcia Gonzalez, N. Warlin, N.G. Valsange, N.
Rehnberg, S. Lundmark, P. Jannasch, and B. Zhang, Synthesis, life cycle
assessment, and polymerization of a vanillin-based spirocyclic diol
toward polyesters with increased glass-transition temperature.ACS Sustainable Chemistry & Engineering . 2019;7(23):19090-19103.
10. Pena Carrodeguas, L., C. Martín, and A.W. Kleij, Semiaromatic
polyesters derived from renewable terpene oxides with high glass
transitions. Macromolecules . 2017;50(14):5337-5345.
11. Ozturk, G.I., A.J. Pasquale, and T.E. Long, Melt synthesis and
characterization of aliphatic low-Tg polyesters as pressure sensitive
adhesives. The Journal of Adhesion . 2010;86(4):395-408.
12. Wang, X.-L., L. Chen, J.-N. Wu, T. Fu, and Y.-Z. Wang,
Flame-retardant pressure-sensitive adhesives derived from epoxidized
soybean oil and phosphorus-containing dicarboxylic acids.ACS Sustainable Chemistry & Engineering . 2017;5(4):3353-3361.
13. Zhang, Z., X. Han, W. Gong, K. Huang, J.h. Li, X. Chen, C. Lian, and
H. Liu, Design and screening of zwitterionic polymer scaffolds for rapid
underwater adhesion and long‐term antifouling stability.AIChE Journal . 2023;69(8):e18084.
14. Audus, D. and J. De Pablo, Polymer informatics: opportunities and
challenges. ACS Macro Letter 2017;6(10):1078-1082.
15. Chen, L., G. Pilania, R. Batra, T.D. Huan, C. Kim, C. Kuenneth, and
R. Ramprasad, Polymer informatics: Current status and critical next
steps. Materials Science and Engineering: R: Reports .
2021;144:100595.
16. Kim, C., A. Chandrasekaran, T.D. Huan, D. Das, and R. Ramprasad,
Polymer genome: a data-powered polymer informatics platform for property
predictions. The Journal of Physical Chemistry C .
2018;122(31):17575-17585.
17. Mannodi-Kanakkithodi, A., A. Chandrasekaran, C. Kim, T.D. Huan, G.
Pilania, V. Botu, and R. Ramprasad, Scoping the polymer genome: A
roadmap for rational polymer dielectrics design and beyond.Materials Today . 2018;21(7):785-796.
18. Patra, T.K., Data-driven methods for accelerating polymer
design. ACS Polymers Au . 2021;2(1):8-26.
19. Andraju, N., G.W. Curtzwiler, Y. Ji, E. Kozliak, and P. Ranganathan,
Machine-Learning-Based Predictions of Polymer and Postconsumer Recycled
Polymer Properties: A Comprehensive Review. ACS Applied
Materials & Interfaces . 2022;14(38):42771-42790.
20. Xu, P., H. Chen, M. Li, and W. Lu, New opportunity: machine learning
for polymer materials design and discovery. Advanced Theory
and Simulations . 2022;5(5):2100565.
21. Zhao, Y., R.J. Mulder, S. Houshyar, and T.C. Le, A review on the
application of molecular descriptors and machine learning in polymer
design. Polymer Chemistry . 2023; 14(29):3325-3346.
22. Martin, T.B. and D.J. Audus,
Emerging
Trends in Machine Learning: A Polymer Perspective. ACS
Polymers Au . 2023; 3(3):239-258.
23. Gao, L., L. Wang, J. Lin, and L. Du, An Intelligent Manufacturing
Platform of Polymers: Polymeric Material Genome Engineering.Engineering . 2023.
24. Yu, M., Y. Shi, X. Liu, Q. Jia, Q. Wang, Z.-H. Luo, F. Yan, and
Y.-N. Zhou, Quantitative structure-property relationship (QSPR)
framework assists in rapid mining of highly Thermostable
polyimides. Chemical Engineering Journal . 2023;465:142768.
25. Schustik, S.A., F. Cravero, I. Ponzoni, and M.F. Diaz, Polymer
informatics: Expert-in-the-loop in QSPR modeling of refractive
index. Computational Materials Science . 2021;194:110460.
26. Wu, J.-Q., X.-Q. Gong, Q. Wang, F. Yan, and J.-J. Li, A QSPR study
for predicting θ (LCST) and θ (UCST) in binary polymer solutions.Chemical Engineering Science . 2023;267:118326.
27. Khan, P. and K. Roy, QSPR modelling for investigation of different
properties of aminoglycoside-derived polymers using 2D
descriptors. SAR and QSAR in Environmental Research .
2021;32(7):595-614.
28. Rasulev, B., F. Jabeen, S. Stafslien, B.J. Chisholm, J. Bahr, M.
Ossowski, and P. Boudjouk, Polymer coating materials and their fouling
release activity: A cheminformatics approach to predict
properties. ACS Applied Materials & Interfaces .
2017;9(2):1781-1792.
29. Pilania, G., C.N. Iverson, T. Lookman, and B.L. Marrone,
Machine-learning-based predictive modeling of glass transition
temperatures: a case of polyhydroxyalkanoate homopolymers and
copolymers. Journal of Chemical Information and Modeling .
2019;59(12):5013-5025.
30. Liang, Z., Z. Li, S. Zhou, Y. Sun, J. Yuan, and C. Zhang,
Machine-learning exploration of polymer compatibility. Cell
Reports Physical Science . 2022;3(6).
31. Alesadi, A., Z. Cao, Z. Li, S. Zhang, H. Zhao, X. Gu, and W. Xia,
Machine learning prediction of glass transition temperature of
conjugated polymers from chemical structure. Cell Reports
Physical Science . 2022;3(6).
32. Wu, S., Y. Kondo, M.-a. Kakimoto, B. Yang, H. Yamada, I. Kuwajima,
G. Lambard, K. Hongo, Y. Xu, and J. Shiomi, Machine-learning-assisted
discovery of polymers with high thermal conductivity using a molecular
design algorithm. Npj Computational Materials .
2019;5(1):66.
33. Tao, L., G. Chen, and Y. Li, Machine learning discovery of
high-temperature polymers. Patterns . 2021;2(4):100225.
34. Barnett, J.W., C.R. Bilchak, Y. Wang, B.C. Benicewicz, L.A. Murdock,
T. Bereau, and S.K. Kumar, Designing exceptional gas-separation polymer
membranes using machine learning. Science Advances .
2020;6(20):eaaz4301.
35. Tao, L., V. Varshney, and Y. Li, Benchmarking machine learning
models for polymer informatics: an example of glass transition
temperature. Journal of Chemical Information and Modeling .
2021;61(11):5395-5413.
36. Tao, L., J. He, N.E. Munyaneza, V. Varshney, W. Chen, G. Liu, and Y.
Li, Discovery of multi-functional polyimides through high-throughput
screening using explainable machine learning. Chemical
Engineering Journal . 2023;465:142949.
37. Wang, M. and J. Jiang, Accelerating Discovery of High Fractional
Free Volume Polymers from a Data-Driven Approach. ACS
Applied Materials & Interfaces . 2022;14(27):31203-31215.
38. Wang, R., Y. Zhu, J. Fu, M. Yang, Z. Ran, J. Li, M. Li, J. Hu, J.
He, and Q. Li, Designing tailored combinations of structural units in
polymer dielectrics for high-temperature capacitive energy
storage. Nature Communications . 2023;14(1):2406.
39. Chen, L., C. Kim, R. Batra, J.P. Lightstone, C. Wu, Z. Li, A.A.
Deshmukh, Y. Wang, H.D. Tran, and P. Vashishta, Frequency-dependent
dielectric constant prediction of polymers using machine
learning. npj Computational Materials . 2020;6(1):61.
40. Zhang, S., S. Du, L. Wang, J. Lin, L. Du, X. Xu, and L. Gao, Design
of silicon-containing arylacetylene resins aided by machine learning
enhanced materials genome approach. Chemical Engineering
Journal . 2022;448:137643.
41. Zhu, J., M. Chu, Z. Chen, L. Wang, J. Lin, and L. Du, Rational
design of heat-resistant polymers with low curing energies by a
materials genome approach. Chemistry of Materials .
2020;32(11):4527-4535.
42. Hu, Y., W. Zhao, L. Wang, J. Lin, and L. Du,
Machine-learning-assisted design of highly tough thermosetting
polymers. ACS Applied Materials & Interfaces .
2022;14(49):55004-55016.
43. Yu, M., Y. Shi, Q. Jia, Q. Wang, Z.-H. Luo, F. Yan, and Y.-N. Zhou,
Ring Repeating Unit: An Upgraded Structure Representation of Linear
Condensation Polymers for Property Prediction. Journal of
Chemical Information and Modeling . 2023;63(4):1177-1187.
44. Antoniuk, E.R., P. Li, B. Kailkhura, and A.M. Hiszpanski,
Representing Polymers as Periodic Graphs with Learned Descriptors for
Accurate Polymer Property Predictions. Journal of Chemical
Information and Modeling . 2022;62(22):5435-5445.
45. Polymer Database (PoLyInfo).https://polymer.nims.go.jp/(before 2021).