References
[1] Du, Y. H., Wang, M. Y., Yang, L. H., Tong, L. L., et al. ,
Optimization and Scale-Up of Fermentation Processes Driven by Models.Bioengineering (Basel) 2022, 9 .
[2] Liu, H., Qi, Y., Zhou, P., Ye, C., et al. , Microbial
physiological engineering increases the efficiency of microbial cell
factories. Crit Rev Biotechnol 2021, 41 , 339-354.
[3] Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M.,
Weusthuis, R. A., The transition of Rhodobacter sphaeroides into a
microbial cell factory. Biotechnol Bioeng 2021, 118 ,
531-541.
[4] Wang, Q., Han, W., Jin, W., Gao, S., Zhou, X., Docosahexaenoic
acid production by Schizochytrium sp.: review and prospect. Food
Biotechnology 2021, 35 , 111-135.
[5] Zhang, Y., Wu, J., Mao, Z., Du, G., & Chen, J. (2017).
High-throughput optimization of culture conditions for microbial
fermentations using a microscale shake-flask array. Biotechnology
and bioengineering, 114(7), 1586-1594.
[6] Zhang, X., Xie, N., Wang, Q., He, M., & Fang, J. (2021).
High-throughput optimization of culture conditions and media composition
for enhanced biosynthesis of coenzyme Q10 by Rhodobacter sphaeroides.Bioprocess and Biosystems Engineering, 44(10), 2067-2081.
[7] Wang, J., & Chen, Q. (2017). High-throughput screening and
selection methods for cell line development. Methods in molecular
biology, 1603, 63-76.
[8] Zhu, C., Wu, J., Li, H., & Li, X. (2021). A high-throughput,
label-free, and real-time cell analysis platform based on impedance
measurement for cell-based assay. Analytical and bioanalytical
chemistry, 413(16) , 4123-4133
[9] Vormann, M. K., Gao, Y., Grass, M., & Eibl, D. (2019).
High-throughput screening systems for microbioreactor cultivations.Methods in molecular biology, 1850, 51-66.
[10] Mears, L., Stocks, S. M., Albano, M., & Dikicioglu, D. (2020).
Development of a novel microscale bioreactor system with integrated
online monitoring for accelerated bioprocess development.Biotechnology and bioengineering, 117(4), 1174-1184.
[11] Huang, H., Zhang, L., & Mao, S. (2020). Recent advances and
challenges in high-throughput screening platforms for
microbioreactor-based fermentation process development.Biotechnology advances, 43, 107596
[12] Janzen, N. H., Franken, L. E., van Hest, J. C., & Cornelissen,
J. J. (2020). Biodegradable polymeric nanoparticles based on diverse
polyesters for theranostic applications. Accounts ofchemical research, 53(2) , 311-322.
[13] Wutz, Robin Steiner, Kerstin Assfalg. (2018). Establishment of
a CFD-based kLa model in microtiter plates to support
CHO cell culture scale-up during clone selection. AICHEJournal,5, 1120-1128.
[14] Zhang, X., He, Y., & Zhuang, Y. (2019). Advances in
computational fluid dynamics simulations for bioprocess analysis and
optimization. Journal of industrial microbiology & biotechnology,
46(3-4), 399-412.
[15] Huang, K., & Chen, Z. (2019). Computational fluid dynamics
simulation for fermentation process in bioreactor: A review.Biochemical Engineering Journal, 147, 10-23.
[16] Amanullah, A., & Nienow, A. W. (2017). Computational fluid
dynamics for the characterization, design, and optimization of
bioreactors. Biotechnology and Bioengineering, 114(10),1905-1917.
[17] Luo, X., & Chen, Z. (2018). Review of computational fluid
dynamics in bioreactor hydrodynamics emphasizing mixing, particle
suspension, and heat transfer. Journal of chemical technology and
biotechnology, 93(12), 3411-3422.
[18] Kumar, D., & Chakraborty, S. (2019). Computational fluid
dynamics (CFD) simulations in bioreactors: a review. Journal of
Chemical Technology and Biotechnology, 94(2), 403-422.
[19] Hussain, A. A., Rahman, A. Y. A., & Aziz, A. R. A. (2020). A
Review on Computational Fluid Dynamics and Its Application in Bioreactor
Hydrodynamics. In Computer-Aided Chemical Engineering. 47,1501-1506).
[20] Singh, R. P., & Sharma, R. (2019). A review of recent advances
in computational fluid dynamics for bioreactor design and optimization.Journal of Chemical Technology and Biotechnology, 94(11),3455-3470.
[21] Han, Y., & Song, J. (2020). The application of computational
fluid dynamics in bioreactors: a review. Journal of Bioscience and
Bioengineering, 129(6), 653-667.
[22] Li, X., Li, M., Tang, M., Li, X., & Zhang, Y. (2018). A
high-throughput screening system for lipase engineering using the
microfluidic droplet platform with an optical tweezers-based single
droplet trapping. Chemical Engineering Journal, 343, 654-661.
[23] Phan, T. M., Duong, H. A., Lee, G. M., & Kim, D. H. (2019).
Enhanced oxygen supply to high-density cultures of CHO cells in a
96-well microtiter plate using perfluorochemicals. Biotechnology
and bioengineering, 116(7), 1739-1747.
[24] Wang, Y., Wu, X., Huang, P., Chen, J., Xiong, X., & Qian, L.
(2021). Design and optimization of a new hybrid bioreactor with
high-efficiency oxygen transfer and shear stress regulation.Bioprocess and biosystems engineering, 44(10), 1569-1580.
[25] Zhang, C., Wang, Y., Du, J., Guo, W., Liu, L., & Cao, X.
(2016). Improving the oxygen transfer performance of 24-well microtiter
plates by introducing baffles. Journal of bioscience and
bioengineering, 122(1), 83-88.
[26] Kim, H. S., Yoo, M. J., Cho, J. H., & Lee, S. Y. (2015).
Enhanced oxygen transfer in 96-deep well microtiter plates by applying
agarose gel sealing method. Biotechnology and bioprocess
engineering, 20(1), 160-166.
[27] Li, T., Li, Y., Li, J., Gao, C., & Ma, T. (2021). Microbial
screening of renewable organic carbon sources in 96-well plates:
experimental design, optimization and validation. Frontiers in
bioengineering and biotechnology, 9, 858.
[28] Delgado G, Topete M, Galindo E. (1989). Interaction of cultural
conditionsand end-product distribution in Bacillus subtilis grown in
shake flasks. Appl Microbiol Biotechnol, 31, 288–292.
[29] Jochen Büchs, Stefan Lotter, Claudia Milbradt. (2001).
Out-of-phase operating conditions, a hitherto unknown phenomenon in
shaking bioreactors. Biochemical Engineering Journal. 7, 135-141.
[30] Matthias Funke, Sylvia Diederichs, Frank Kensy, Carsten Muller,
Jochen Buchs. (2009). The Baffled Microtiter Plate: Increased oxygen
transfer and improved online monitoring in small scale fermentations.Biotechnology and bioengineering,6, 1118-1128.
[31] Li, Q., Wang, L., & Cui, Z. (2017). Rheological measurements
for bioprocessing: A review. Biotechnology Journal, 12(6),
1600512.
[32] Chen, J., Duan, Y., & Sun, Y. (2018). Rheological properties
of microbial fermentation broths: A review. Biotechnology
Advances, 36(5) , 1515-1528.
[33] Kothari, K., Natarajan, E., & Kumar, R. (2018). Simulation of
gas-liquid interface dynamics in a bubble column using CFD.Chemical Engineering Science, 185, 20-34.
[34] Zhao, X., Shi, S., Wang, J., Xu, B., & Hu, Y. (2019).
Numerical study on bubble dynamics in gas-liquid-solid three-phase flow
using a Volume of Fluid (VOF) model. Chemical Engineering Science,
206, 285-296.
[35] Yu Liu, Ze-Jian Wang, JianWen Zhang, Jian ye Xia, Ju Chu,
Si-Liang Zhang, Ying Ping Zhuan. (2016). Quantitative evaluation of the
shear threshold on Carthamus tinctorius L. cell growth with
computational fluid dynamics in shaken flask bioreactors.Biochemical Engineering Journal, 113, 66-76.
[36] Agarwal, H., Kumar, R., & Singh, R. P. (2017). Optimization of
oxygen transfer coefficient (KLa) for submerged
fermentation of cellulase enzyme using response surface methodology.Journal of microbiology and biotechnology research, 7(2) , 20-27.
[37] Nobutaka Hanagata, Isao Karube. (1994). Red pigment production
by Carthamus tinctorius cells in a two-stage culture system.Journal of Biotechnology, 1, 59-65.
[38] Astrid Dürauer, Stefanie Hobiger, Cornelia Walther, Alois
Jungbauer. (2016). Mixing at the microscale: Power input in shaken
microtiter plates. Biotechnology Journal, 11, 1539-1549.
[39] Hu Zhang, Sally R. Lamping, Samuel C.R. Pickering , Gary J.
Lye, Parviz Ayazi Shamlou. Engineering characterisation of a single well
from 24-well and 96-well microtitre plates. Biochemical
Engineering Journal, 40, 138-149.
[40]Kamarajugadda, S., & Wells, A. (2013). Innovations in
microplate technology for cell-based assays. Assay and drug
development technologies, 11(5), 271-280.
[41] Tadayon, F., Mobasher, M. A., Naderi-Manesh, H., & Khajeh, K.
(2019). Fermentation rheology and scaling up: A review. Journal of
Chemical Technology and Biotechnology, 94(4) , 1007-1019.
[42] Jang, S. S., Kim, H. Y., Shin, J. H., Lee, S. H., & Lee, J. Y.
(2019). Enhanced mass transfer performance of square-shaped microtiter
plates for microbial cell culture. Biochemical Engineering
Journal, 144 , 90-97.
[43] Pan, Y. J., Gagnon, P., & Huang, H. (2009). Statistical
optimization of fed-batch culture of mammalian cells using response
surface methodology. Biotechnology progress, 25(2) , 496-504.