Reference
1. Aron J. Mobile Money and the Economy: A Review of the Evidence.The World Bank Research Observer . 2018;33(2):135-188.
doi:10.1093/wbro/lky001
2. Reaves B, Bowers J, Scaife N, et al. Mo(bile) Money, Mo(bile)
Problems: Analysis of Branchless Banking Applications. ACM Trans
Priv Secur . 2017;20(3):1-31. doi:10.1145/3092368
3. Zhdanova M, Repp J, Rieke R, Gaber C, Hemery B. No Smurfs: Revealing
Fraud Chains in Mobile Money Transfers. In: 2014 Ninth
International Conference on Availability, Reliability and Security .
IEEE; 2014:11-20. doi:10.1109/ARES.2014.10
4. Rieke R, Zhdanova M, Repp J, Giot R, Gaber C. Fraud Detection in
Mobile Payments Utilizing Process Behavior Analysis. In: 2013
International Conference on Availability, Reliability and Security .
IEEE; 2013:662-669. doi:10.1109/ARES.2013.87
5. Nyamtiga BW, Sam A, Laizer LS. Enhanced Security Model For Mobile
Banking Systems In Tanzania. 2013;1(4):17.
6. Merritt C. Mobile money transfer services: The next phase in the
evolution of person-to-person payments. Journal of Payments
Strategy & Systems . 2011;5(2):143-160.
7. Lake AJ. Risk Management in Mobile Money: Observed Risks and
Proposed Mitigants for Mobile Money Operators . World Bank; 2013.
doi:10.1596/28420
8. Ali G, Ally Dida M, Elikana Sam A. Evaluation of Key Security Issues
Associated with Mobile Money Systems in Uganda. Information .
2020;11(6):309. doi:10.3390/info11060309
9. Kikulwe EM, Fischer E, Qaim M. Mobile Money, Smallholder Farmers, and
Household Welfare in Kenya. PLOS ONE . 2014;9(10):e109804.
doi:10.1371/journal.pone.0109804
10. Novikova E, Kotenko I. Visual Analytics for Detecting Anomalous
Activity in Mobile Money Transfer Services. In: Teufel S, Min TA, You I,
Weippl E, eds. Availability, Reliability, and Security in
Information Systems . Lecture Notes in Computer Science. Springer
International Publishing; 2014:63-78. doi:10.1007/978-3-319-10975-6_5
11. Akomea-Frimpong I, Andoh C, Akomea-Frimpong A, Dwomoh-Okudzeto Y.
Control of fraud on mobile money services in Ghana: an exploratory
study. JMLC . 2019;22(2):300-317. doi:10.1108/JMLC-03-2018-0023
12. Solin M, Zerzan A. Mobile Money: Methodology for Assessing Money
Laundering and Terrorist Financing Risks. :35.
13. Gaber C, Hemery B, Achemlal M, Pasquet M, Urien P. Synthetic logs
generator for fraud detection in mobile transfer services. In:2013 International Conference on Collaboration Technologies and
Systems (CTS) . ; 2013:174-179. doi:10.1109/CTS.2013.6567225
14. B.Mtaho A. Improving Mobile Money Security with Two-Factor
Authentication. IJCA . 2015;109(7):9-15. doi:10.5120/19198-0826
15. Singh A, Jain A, Biable SE. Financial Fraud Detection Approach Based
on Firefly Optimization Algorithm and Support Vector Machine.
Ramachandran M, ed. Applied Computational Intelligence and Soft
Computing . 2022;2022:1-10. doi:10.1155/2022/1468015
16. Kang H. Fraud Detection in Mobile Money Transactions Using Machine
Learning. Information Systems and Business Analytics .
2019;5(32):320-332.
17. Singh K, Best P. Anti-Money Laundering: Using data visualization to
identify suspicious activity. International Journal of Accounting
Information Systems . 2019;34:100418. doi:10.1016/j.accinf.2019.06.001
18. Botchey FE, Qin Z, Hughes-Lartey K. Mobile Money Fraud
Prediction—A Cross-Case Analysis on the Efficiency of Support Vector
Machines, Gradient Boosted Decision Trees, and Naïve Bayes Algorithms.Information . 2020;11(8):383. doi:10.3390/info11080383
19. Lokanan ME, Sharma K. Fraud prediction using machine learning: The
case of investment advisors in Canada. Machine Learning with
Applications . 2022;8:100269. doi:10.1016/j.mlwa.2022.100269
20. Lokanan M, Liu S. Predicting Fraud Victimization Using Classical
Machine Learning. Entropy . 2021;23(3):300. doi:10.3390/e23030300
21. Pech R. Fraud detection in mobile money transfer as binary
classification problem. :16.
22. Aslam N, Khan IU, Alansari A, et al. Anomaly Detection Using
Explainable Random Forest for the Prediction of Undesirable Events in
Oil Wells. Ramachandran M, ed. Applied Computational Intelligence
and Soft Computing . 2022;2022:1-14. doi:10.1155/2022/1558381
23. Bagga S, Goyal A, Gupta N, Goyal A. Credit Card Fraud Detection
using Pipeling and Ensemble Learning. Procedia Computer Science .
2020;173:104-112. doi:10.1016/j.procs.2020.06.014
24. Dighe D, Patil S, Kokate S. Detection of Credit Card Fraud
Transactions Using Machine Learning Algorithms and Neural Networks: A
Comparative Study. In: 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA) . ; 2018:1-6.
doi:10.1109/ICCUBEA.2018.8697799
25. Itoo F, Meenakshi, Singh S. Comparison and analysis of logistic
regression, Naïve Bayes and KNN machine learning algorithms for credit
card fraud detection. Int j inf tecnol . 2021;13(4):1503-1511.
doi:10.1007/s41870-020-00430-y
26. Perols J. Financial Statement Fraud Detection: An Analysis of
Statistical and Machine Learning Algorithms. AUDITING: A Journal
of Practice & Theory . 2011;30(2):19-50. doi:10.2308/ajpt-50009
27. Sundarkumar GG, Ravi V, Siddeshwar V. One-class support vector
machine based undersampling: Application to churn prediction and
insurance fraud detection. In: 2015 IEEE International Conference
on Computational Intelligence and Computing Research (ICCIC) . ;
2015:1-7. doi:10.1109/ICCIC.2015.7435726
28. Herland M, Khoshgoftaar TM, Bauder RA. Big Data fraud detection
using multiple medicare data sources. J Big Data . 2018;5(1):29.
doi:10.1186/s40537-018-0138-3
29. Thornton D, Mueller RM, Schoutsen P, van Hillegersberg J. Predicting
Healthcare Fraud in Medicaid: A Multidimensional Data Model and Analysis
Techniques for Fraud Detection. Procedia Technology .
2013;9:1252-1264. doi:10.1016/j.protcy.2013.12.140
30. Coppolino L, D’Antonio S, Formicola V, Massei C, Romano L. Use of
the Dempster-Shafer Theory for Fraud Detection: The Mobile Money
Transfer Case Study. In: Camacho D, Braubach L, Venticinque S, Badica C,
eds. Intelligent Distributed Computing VIII . Studies in
Computational Intelligence. Springer International Publishing;
2015:465-474. doi:10.1007/978-3-319-10422-5_48
31. Sahin Y, Duman E. Detecting credit card fraud by ANN and logistic
regression. In: 2011 International Symposium on Innovations in
Intelligent Systems and Applications . ; 2011:315-319.
doi:10.1109/INISTA.2011.5946108
32. Bashir S, Ghous DH. Detecting Mobile Money Laundering Using Genetic
Algorithm as Feature Selection Method with Classification Method.LC International Journal of STEM (ISSN: 2708-7123) . 2020;1(4):121
129-121 129. doi:10.5281/zenodo.5149794
33. Sahin Y, Bulkan S, Duman E. A cost-sensitive decision tree approach
for fraud detection. Expert Systems with Applications .
2013;40(15):5916-5923. doi:10.1016/j.eswa.2013.05.021
34. Ruder S. An overview of gradient descent optimization algorithms.
Published online June 15, 2017. doi:10.48550/arXiv.1609.04747
35. Mercier Q, Poirion F, Désidéri JA. A stochastic multiple gradient
descent algorithm. European Journal of Operational Research .
2018;271(3):808-817. doi:10.1016/j.ejor.2018.05.064
36. Jing R, Tian H, Li Y, et al. Improving the Data Quality for Credit
Card Fraud Detection. In: 2020 IEEE International Conference on
Intelligence and Security Informatics (ISI) . ; 2020:1-6.
doi:10.1109/ISI49825.2020.9280510
37. Duan L. Performance Evaluation and Practical Use of Supervised Data
Mining Algorithms for Credit Card Approval. In: 2020 International
Conference on Computing and Data Science (CDS) . ; 2020:251-254.
doi:10.1109/CDS49703.2020.00057
38. Li Z, Liu G, Jiang C. Deep Representation Learning With Full Center
Loss for Credit Card Fraud Detection. IEEE Transactions on
Computational Social Systems . 2020;7(2):569-579.
doi:10.1109/TCSS.2020.2970805
39. Jurgovsky J, Granitzer M, Ziegler K, et al. Sequence classification
for credit-card fraud detection. Expert Systems with
Applications . 2018;100:234-245. doi:10.1016/j.eswa.2018.01.037
40. Lokanan ME. Predicting Money Laundering Using Machine Learning and
Artificial Neural Networks Algorithms in Banks. Journal of Applied
Security Research . 2022;0(0):1-25. doi:10.1080/19361610.2022.2114744
41. Nami S, Shajari M. Cost-sensitive payment card fraud detection based
on dynamic random forest and k-nearest neighbors. Expert Systems
with Applications . 2018;110:381-392. doi:10.1016/j.eswa.2018.06.011
42. Dornadula VN, Geetha S. Credit Card Fraud Detection using Machine
Learning Algorithms. Procedia Computer Science . 2019;165:631-641.
doi:10.1016/j.procs.2020.01.057
43. Lopez-Rojas EA. Applying Simulation to the Problem of Detecting
Financial Fraud. Published online 2016. Accessed September 21, 2022.
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12932
44. Rojas EAL, Axelsson S, Baca D. Analysis of fraud controls using the
PaySim financial simulator. IJSPM . 2018;13(4):377.
doi:10.1504/IJSPM.2018.093756
45. Lopez-Rojas EA, Barneaud C. Advantages of the PaySim Simulator for
Improving Financial Fraud Controls. In: Arai K, Bhatia R, Kapoor S, eds.Intelligent Computing . Advances in Intelligent Systems and
Computing. Springer International Publishing; 2019:727-736.
doi:10.1007/978-3-030-22868-2_51
46. Luengo J, Fernández A, García S, Herrera F. Addressing data
complexity for imbalanced data sets: analysis of SMOTE-based
oversampling and evolutionary undersampling. Soft Comput .
2011;15(10):1909-1936. doi:10.1007/s00500-010-0625-8
47. Aswathi M, Ghosh A, Namboothiri LV. Borda Count Versus Majority
Voting for Credit Card Fraud Detection. In: Karuppusamy P, Perikos I,
García Márquez FP, eds. Ubiquitous Intelligent Systems . Smart
Innovation, Systems and Technologies. Springer; 2022:319-330.
doi:10.1007/978-981-16-3675-2_24
48. Almhaithawi D, Jafar A, Aljnidi M. Example-dependent cost-sensitive
credit cards fraud detection using SMOTE and Bayes minimum risk.SN Appl Sci . 2020;2(9):1574. doi:10.1007/s42452-020-03375-w
49. Sisodia DS, Reddy NK, Bhandari S. Performance evaluation of class
balancing techniques for credit card fraud detection. In: 2017
IEEE International Conference on Power, Control, Signals and
Instrumentation Engineering (ICPCSI) . ; 2017:2747-2752.
doi:10.1109/ICPCSI.2017.8392219
50. Matthews BW. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta
(BBA) - Protein Structure . 1975;405(2):442-451.
doi:10.1016/0005-2795(75)90109-9
51. Chicco D, Jurman G. An Invitation to Greater Use of Matthews
Correlation Coefficient in Robotics and Artificial Intelligence.Front Robot AI . 2022;9:876814. doi:10.3389/frobt.2022.876814
52. Ryman-Tubb NF, Krause P, Garn W. How Artificial Intelligence and
machine learning research impacts payment card fraud detection: A survey
and industry benchmark. Engineering Applications of Artificial
Intelligence . 2018;76:130-157. doi:10.1016/j.engappai.2018.07.008
53. Hendriyetty N, Grewal BS. Macroeconomics of money laundering:
effects and measurements. Journal of Financial Crime .
2017;24(1):65-81. doi:10.1108/JFC-01-2016-0004
54. Amoh JK, Adafula B. An estimation of the underground economy and tax
evasion: Empirical analysis from an emerging economy. Journal of
Money Laundering Control . 2019;22(4):626-645.
doi:10.1108/JMLC-01-2019-0002
55. Bashlakova V, Bashlakov H. The study of the shadow economy in modern
conditions: Theory, methodology, practice. The Quarterly Review of
Economics and Finance . 2021;81:468-480. doi:10.1016/j.qref.2020.10.032
56. Zareapoor M, Shamsolmoali P. Application of credit card fraud
detection: Based on bagging ensemble classifier. Procedia computer
science . 2015;48(2015):679-685.