Reference
1. Aron J. Mobile Money and the Economy: A Review of the Evidence.The World Bank Research Observer . 2018;33(2):135-188. doi:10.1093/wbro/lky001
2. Reaves B, Bowers J, Scaife N, et al. Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications. ACM Trans Priv Secur . 2017;20(3):1-31. doi:10.1145/3092368
3. Zhdanova M, Repp J, Rieke R, Gaber C, Hemery B. No Smurfs: Revealing Fraud Chains in Mobile Money Transfers. In: 2014 Ninth International Conference on Availability, Reliability and Security . IEEE; 2014:11-20. doi:10.1109/ARES.2014.10
4. Rieke R, Zhdanova M, Repp J, Giot R, Gaber C. Fraud Detection in Mobile Payments Utilizing Process Behavior Analysis. In: 2013 International Conference on Availability, Reliability and Security . IEEE; 2013:662-669. doi:10.1109/ARES.2013.87
5. Nyamtiga BW, Sam A, Laizer LS. Enhanced Security Model For Mobile Banking Systems In Tanzania. 2013;1(4):17.
6. Merritt C. Mobile money transfer services: The next phase in the evolution of person-to-person payments. Journal of Payments Strategy & Systems . 2011;5(2):143-160.
7. Lake AJ. Risk Management in Mobile Money: Observed Risks and Proposed Mitigants for Mobile Money Operators . World Bank; 2013. doi:10.1596/28420
8. Ali G, Ally Dida M, Elikana Sam A. Evaluation of Key Security Issues Associated with Mobile Money Systems in Uganda. Information . 2020;11(6):309. doi:10.3390/info11060309
9. Kikulwe EM, Fischer E, Qaim M. Mobile Money, Smallholder Farmers, and Household Welfare in Kenya. PLOS ONE . 2014;9(10):e109804. doi:10.1371/journal.pone.0109804
10. Novikova E, Kotenko I. Visual Analytics for Detecting Anomalous Activity in Mobile Money Transfer Services. In: Teufel S, Min TA, You I, Weippl E, eds. Availability, Reliability, and Security in Information Systems . Lecture Notes in Computer Science. Springer International Publishing; 2014:63-78. doi:10.1007/978-3-319-10975-6_5
11. Akomea-Frimpong I, Andoh C, Akomea-Frimpong A, Dwomoh-Okudzeto Y. Control of fraud on mobile money services in Ghana: an exploratory study. JMLC . 2019;22(2):300-317. doi:10.1108/JMLC-03-2018-0023
12. Solin M, Zerzan A. Mobile Money: Methodology for Assessing Money Laundering and Terrorist Financing Risks. :35.
13. Gaber C, Hemery B, Achemlal M, Pasquet M, Urien P. Synthetic logs generator for fraud detection in mobile transfer services. In:2013 International Conference on Collaboration Technologies and Systems (CTS) . ; 2013:174-179. doi:10.1109/CTS.2013.6567225
14. B.Mtaho A. Improving Mobile Money Security with Two-Factor Authentication. IJCA . 2015;109(7):9-15. doi:10.5120/19198-0826
15. Singh A, Jain A, Biable SE. Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine. Ramachandran M, ed. Applied Computational Intelligence and Soft Computing . 2022;2022:1-10. doi:10.1155/2022/1468015
16. Kang H. Fraud Detection in Mobile Money Transactions Using Machine Learning. Information Systems and Business Analytics . 2019;5(32):320-332.
17. Singh K, Best P. Anti-Money Laundering: Using data visualization to identify suspicious activity. International Journal of Accounting Information Systems . 2019;34:100418. doi:10.1016/j.accinf.2019.06.001
18. Botchey FE, Qin Z, Hughes-Lartey K. Mobile Money Fraud Prediction—A Cross-Case Analysis on the Efficiency of Support Vector Machines, Gradient Boosted Decision Trees, and Naïve Bayes Algorithms.Information . 2020;11(8):383. doi:10.3390/info11080383
19. Lokanan ME, Sharma K. Fraud prediction using machine learning: The case of investment advisors in Canada. Machine Learning with Applications . 2022;8:100269. doi:10.1016/j.mlwa.2022.100269
20. Lokanan M, Liu S. Predicting Fraud Victimization Using Classical Machine Learning. Entropy . 2021;23(3):300. doi:10.3390/e23030300
21. Pech R. Fraud detection in mobile money transfer as binary classification problem. :16.
22. Aslam N, Khan IU, Alansari A, et al. Anomaly Detection Using Explainable Random Forest for the Prediction of Undesirable Events in Oil Wells. Ramachandran M, ed. Applied Computational Intelligence and Soft Computing . 2022;2022:1-14. doi:10.1155/2022/1558381
23. Bagga S, Goyal A, Gupta N, Goyal A. Credit Card Fraud Detection using Pipeling and Ensemble Learning. Procedia Computer Science . 2020;173:104-112. doi:10.1016/j.procs.2020.06.014
24. Dighe D, Patil S, Kokate S. Detection of Credit Card Fraud Transactions Using Machine Learning Algorithms and Neural Networks: A Comparative Study. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) . ; 2018:1-6. doi:10.1109/ICCUBEA.2018.8697799
25. Itoo F, Meenakshi, Singh S. Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. Int j inf tecnol . 2021;13(4):1503-1511. doi:10.1007/s41870-020-00430-y
26. Perols J. Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms. AUDITING: A Journal of Practice & Theory . 2011;30(2):19-50. doi:10.2308/ajpt-50009
27. Sundarkumar GG, Ravi V, Siddeshwar V. One-class support vector machine based undersampling: Application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) . ; 2015:1-7. doi:10.1109/ICCIC.2015.7435726
28. Herland M, Khoshgoftaar TM, Bauder RA. Big Data fraud detection using multiple medicare data sources. J Big Data . 2018;5(1):29. doi:10.1186/s40537-018-0138-3
29. Thornton D, Mueller RM, Schoutsen P, van Hillegersberg J. Predicting Healthcare Fraud in Medicaid: A Multidimensional Data Model and Analysis Techniques for Fraud Detection. Procedia Technology . 2013;9:1252-1264. doi:10.1016/j.protcy.2013.12.140
30. Coppolino L, D’Antonio S, Formicola V, Massei C, Romano L. Use of the Dempster-Shafer Theory for Fraud Detection: The Mobile Money Transfer Case Study. In: Camacho D, Braubach L, Venticinque S, Badica C, eds. Intelligent Distributed Computing VIII . Studies in Computational Intelligence. Springer International Publishing; 2015:465-474. doi:10.1007/978-3-319-10422-5_48
31. Sahin Y, Duman E. Detecting credit card fraud by ANN and logistic regression. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications . ; 2011:315-319. doi:10.1109/INISTA.2011.5946108
32. Bashir S, Ghous DH. Detecting Mobile Money Laundering Using Genetic Algorithm as Feature Selection Method with Classification Method.LC International Journal of STEM (ISSN: 2708-7123) . 2020;1(4):121 129-121 129. doi:10.5281/zenodo.5149794
33. Sahin Y, Bulkan S, Duman E. A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications . 2013;40(15):5916-5923. doi:10.1016/j.eswa.2013.05.021
34. Ruder S. An overview of gradient descent optimization algorithms. Published online June 15, 2017. doi:10.48550/arXiv.1609.04747
35. Mercier Q, Poirion F, Désidéri JA. A stochastic multiple gradient descent algorithm. European Journal of Operational Research . 2018;271(3):808-817. doi:10.1016/j.ejor.2018.05.064
36. Jing R, Tian H, Li Y, et al. Improving the Data Quality for Credit Card Fraud Detection. In: 2020 IEEE International Conference on Intelligence and Security Informatics (ISI) . ; 2020:1-6. doi:10.1109/ISI49825.2020.9280510
37. Duan L. Performance Evaluation and Practical Use of Supervised Data Mining Algorithms for Credit Card Approval. In: 2020 International Conference on Computing and Data Science (CDS) . ; 2020:251-254. doi:10.1109/CDS49703.2020.00057
38. Li Z, Liu G, Jiang C. Deep Representation Learning With Full Center Loss for Credit Card Fraud Detection. IEEE Transactions on Computational Social Systems . 2020;7(2):569-579. doi:10.1109/TCSS.2020.2970805
39. Jurgovsky J, Granitzer M, Ziegler K, et al. Sequence classification for credit-card fraud detection. Expert Systems with Applications . 2018;100:234-245. doi:10.1016/j.eswa.2018.01.037
40. Lokanan ME. Predicting Money Laundering Using Machine Learning and Artificial Neural Networks Algorithms in Banks. Journal of Applied Security Research . 2022;0(0):1-25. doi:10.1080/19361610.2022.2114744
41. Nami S, Shajari M. Cost-sensitive payment card fraud detection based on dynamic random forest and k-nearest neighbors. Expert Systems with Applications . 2018;110:381-392. doi:10.1016/j.eswa.2018.06.011
42. Dornadula VN, Geetha S. Credit Card Fraud Detection using Machine Learning Algorithms. Procedia Computer Science . 2019;165:631-641. doi:10.1016/j.procs.2020.01.057
43. Lopez-Rojas EA. Applying Simulation to the Problem of Detecting Financial Fraud. Published online 2016. Accessed September 21, 2022. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12932
44. Rojas EAL, Axelsson S, Baca D. Analysis of fraud controls using the PaySim financial simulator. IJSPM . 2018;13(4):377. doi:10.1504/IJSPM.2018.093756
45. Lopez-Rojas EA, Barneaud C. Advantages of the PaySim Simulator for Improving Financial Fraud Controls. In: Arai K, Bhatia R, Kapoor S, eds.Intelligent Computing . Advances in Intelligent Systems and Computing. Springer International Publishing; 2019:727-736. doi:10.1007/978-3-030-22868-2_51
46. Luengo J, Fernández A, García S, Herrera F. Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput . 2011;15(10):1909-1936. doi:10.1007/s00500-010-0625-8
47. Aswathi M, Ghosh A, Namboothiri LV. Borda Count Versus Majority Voting for Credit Card Fraud Detection. In: Karuppusamy P, Perikos I, García Márquez FP, eds. Ubiquitous Intelligent Systems . Smart Innovation, Systems and Technologies. Springer; 2022:319-330. doi:10.1007/978-981-16-3675-2_24
48. Almhaithawi D, Jafar A, Aljnidi M. Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk.SN Appl Sci . 2020;2(9):1574. doi:10.1007/s42452-020-03375-w
49. Sisodia DS, Reddy NK, Bhandari S. Performance evaluation of class balancing techniques for credit card fraud detection. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) . ; 2017:2747-2752. doi:10.1109/ICPCSI.2017.8392219
50. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure . 1975;405(2):442-451. doi:10.1016/0005-2795(75)90109-9
51. Chicco D, Jurman G. An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence.Front Robot AI . 2022;9:876814. doi:10.3389/frobt.2022.876814
52. Ryman-Tubb NF, Krause P, Garn W. How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark. Engineering Applications of Artificial Intelligence . 2018;76:130-157. doi:10.1016/j.engappai.2018.07.008
53. Hendriyetty N, Grewal BS. Macroeconomics of money laundering: effects and measurements. Journal of Financial Crime . 2017;24(1):65-81. doi:10.1108/JFC-01-2016-0004
54. Amoh JK, Adafula B. An estimation of the underground economy and tax evasion: Empirical analysis from an emerging economy. Journal of Money Laundering Control . 2019;22(4):626-645. doi:10.1108/JMLC-01-2019-0002
55. Bashlakova V, Bashlakov H. The study of the shadow economy in modern conditions: Theory, methodology, practice. The Quarterly Review of Economics and Finance . 2021;81:468-480. doi:10.1016/j.qref.2020.10.032
56. Zareapoor M, Shamsolmoali P. Application of credit card fraud detection: Based on bagging ensemble classifier. Procedia computer science . 2015;48(2015):679-685.