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Abstract8

The streambed is the critical interface between the aquatic and terrestrial systems and hosts impor-9

tant biogeochemical hot spots within river corridors. Although the streambed characteristics are10

significantly different from those of its surrounding soil, the streambed itself has not been explicitly11

represented in watershed models. We developed an integrated hydrologic model that explicitly incor-12

porated a streambed layer to examine the hydrological effects of streambed characteristics including13

hydraulic conductivity (K), layer thickness, and width on the exchange fluxes across the streambed14

as well as the streamflow at the watershed outlet. The numerical experiments were performed in15

the American River Watershed, a headwater, mountainous watershed within the Yakima River Basin16

in central Washington. Despite having a negligible effect on the watershed streamflow, an explicit17

representation of the streambed with distinctive properties dramatically changed the magnitude and18

variability of the exchange flux. In general, larger streambed K along with a thicker streambed layer19

induced larger exchange fluxes. The exchange flux was most sensitive to the streambed width or20

the mesh resolution of the streambed. A smaller streambed width (or a finer streambed resolution)21

increases exchange fluxes per unit area while reducing the overall exchange volumes across the entire22

streambed. The amount of baseflow decreased by 6% as the streambed width decreased from 25023

m to 50 m. This finding is important because these hydrological changes may in turn affect the24

exchange of nutrients and contaminants between surface water and groundwater and the associated25

biogeochemical processes. Our work demonstrated the importance of representing streambed in26

fully distributed, process-based watershed models in better capturing the exchange flow dynamics in27

river corridors.28

29

Keywords: streambed, surface water-groundwater interactions, hydrologic exchange flux, in-30

tegrated watershed modeling31

1 Introduction32

The streambed is the critical interface between aquatic and terrestrial systems and hosts impor-33

tant hydrological and biogeochemical hot spots within watersheds. Streambed physical characteris-34

tics including hydraulic conductivity (K) play an important role in regulating the rate, timing, and35

location of surface water-groundwater exchange fluxes, which in turn impact the mobilization and36

transformation of nutrients and contaminants in river corridors (Boano et al., 2014). Understand-37

ing the effects of streambed properties on watershed hydro-biogeochemical processes is crucial for38

watershed management and ecosystem health.39

Past field and laboratory studies have found that streambed properties, especially streambed40

hydraulic conductivity (K), were considerably different from those of the underlying sediments.41

Streambeds tend to have reduced porosity and K due to fine sediment clogging and/or bioclogging42

(Brunke, 1999; Shrivastava et al., 2020a). For example, Levy et al. (2011) measured the streambed K43

at different depths using seepage meters and slug tests and they found that the K in the top layer was44

an order of magnitude lower than the underlying sediments due to the deposition of fine sediments45

forming a heavily clogged top layer. On the contrary, streambeds influenced by sediment reworking46

(e.g., fish nesting) and scouring tend to have a larger K in the top layer (Cardenas and Zlotnik, 2003;47

Song et al., 2010; NOGARO et al., 2006). Even in the same river reach, streambed can exhibit strong48

heterogeneity in measured K that varies several orders of magnitude (Datry et al., 2015). In addition49

to K, streambeds often vary in thickness and width, but the roles of those properties on exchange50

fluxes have received limited attention (Ghysels et al., 2018).51

Previous numerical studies using physically based models have primarily focused on the52

streambed- to channel-scale simulation of hydrological processes across various geomorphic settings53

(e.g., dunes, bars, and meanders) (Boano et al., 2014). The heterogeneity of streambed sediments,54

bed thickness, bedform geometry, and channel curvature was found to control the rate and extent55

of hyporheic exchange (Storey et al., 2003; Salehin et al., 2004; Cardenas et al., 2004; Cardenas56

and Wilson, 2007a,b; Sawyer and Cardenas, 2009). In meandering rivers, the river planimetry57

or sinuosity as well as channel bed slope have been shown to govern the pattern of intrameander58
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hydrologic exchange flow paths (Boano et al., 2006; Cardenas, 2009a,b; Revelli et al., 2008; Shuai59

et al., 2019; Huang and Chui, 2022). Most of these studies assumed idealized bed forms or meanders60

under steady-state flow conditions. Few modeling studies have simulated hydrologic exchange fluxes61

at river reach scale (100s of meter to 10s of km) or watershed scale that are driven by observed62

river morphology and natural flow conditions (Zhou et al., 2018; Shuai et al., 2019). Although these63

fine-scale studies provide detailed information about spatial and temporal patterns of streambed64

exchange fluxes, they do not scale to full watershed simulations.65

Despite their distinctive properties, streambeds have not been explicitly represented in phys-66

ically based, watershed models. Partly, this owes to the lack of observation data to parameterize67

streambeds in large watershed models. Watershed models have traditionally simplified the streambed68

representation and assumed homogeneous properties. There are two commonly used approaches for69

representing stream networks in physically based, watershed models. The first one is the channel70

routing approach, which is widely used by semi-distributed models (e.g., Soil and Water Assessment71

Tool (SWAT) and Precipitation-Runoff Modeling System (PRMS)). The stream network is predefined72

based on common hydrography datasets such as the NHDPlus (National Hydrography Dataset Plus,73

Simley and Carswell Jr (2009)). These models treat streams as simplified lines that connect via74

nodes. Each node stores information about streamflow upstream of the node. Within nodes, stream75

channels are conceptualized to be uniform with constant characteristics. This simplification improves76

computational efficiency at the watershed scale but ignores important processes including surface77

water-groundwater interactions and heterogeneous exchange flowpaths occurring at the terrestrial78

and aquatic interface.79

The second approach to represent stream network is to form it naturally by following the terrains,80

which is used by most fully-distributed, integrated hydrologic models including ParFlow (Kollet and81

Maxwell, 2006), HydroGeoSphere (HGS) (Aquanty, 2015), and OpenGeoSys (Kolditz et al., 2008).82

Instead of predefining stream networks, these models form stream networks from terrain-following83

grids. As a result, the location and width of the streambed are constrained by the topography and84

grid resolution of the model, which may deviate from the actual stream location and extent. For85

example, the ParFlow-CONUS model used a coarse grid resolution of 1 km on the land surface86

and results in overland flow routing of surface water across 1-km grid cells (Maxwell et al., 2015).87

The coarse meshes lead to zigzagging river channels, while the averaging of channel topography88

and slopes across the mesh element results in reduced stream water depth and velocity. Typically,89

these integrated hydrologic models also assume that the streambed meshes share the same physical90

properties as the soil or geologic layer underneath them.91

To accurately represent the streambed in a watershed-scale model, a fine grid resolution near92

stream channels, both horizontally and vertically, is desired. The grid resolution is highly important93

for the spatial representation of channel topography, which affects fine-scale hyporheic exchange94

across bedforms (e.g., bars, pools, and riffles) (Boano et al., 2007) and stream-riparian zone in-95

teractions (e.g., overbank flooding) (Dey et al., 2022; Marks and Bates, 2000). A recent study96

found that 85% of global rivers have an average width of 150 m (Feng et al., 2022). For headwater97

streams, the width would be much smaller. Using a coarse resolution mesh at the watershed scale98

would likely obliterate small creeks and low-order streams (Käser et al., 2014). However, refining99

meshes uniformly across the watershed (i.e., structured meshes) would exponentially increase the100

total number of grid cells, and thus the associated computational cost. To balance the computational101

cost and model resolution, unstructured meshes which use a finer grid near the domain of interest102

and a coarser grid elsewhere have been adopted in integrated hydrologic models (e.g., HGS).103

Previous studies have neither explicitly represented streambed nor examined the hydrologic104

exchange flux patterns in watershed models. The objective of this study is to investigate the effects of105

streambed properties on watershed hydrological processes such as the exchange flux between surface106

water and groundwater. We achieve this by explicitly representing the streambed in Advanced107

Terrestrial Simulator (ATS), an integrated hydrologic model that couples surface-subsurface flows108

with land surface processes, using unstructured meshes. The variable meshes in both horizontal109

and vertical directions allow the fine-scale streambed morphology to be fully resolved while saving110

computational costs. We test the sensitivity of streambed K, layer thickness, and streambed width (or111
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horizontal grid resolution) on the hydrologic exchange flows across streambeds as well as watershed112

streamflow in a mountainous, headwater watershed. Our study has important implications for113

simulating groundwater/stream interactions and the associated biogeochemical processes at the114

watershed scale.115

2 Material and Methods116

2.1 Study site117

The American River Watershed is a headwater watershed located within the Yakima River118

Basin in Central Washington (Figure 1). The watershed receives an annual average precipitation of119

∼1740 𝑚𝑚. As a snow-dominated watershed, snowfall contributes nearly half of the precipitation,120

with an annual average of ∼850 𝑚𝑚, and primarily occurs from December through April. The121

watershed is classified as a Mediterranean-influenced warm-summer humid continental climate (i.e.,122

Dsb) on the Koppen classification system. It is a HUC10 watershed that encompasses 205 𝑘𝑚2 area123

with evergreen (83%) and shrub land (11%) as the two dominant land cover types. There is one USGS124

gage (12488500) located at the watershed outlet with gage height and discharge measurements.125

Figure 1. Study site showing the location of the American River Watershed within Washington State, DEM,
and stream network within the watershed. USGS gage is indicated in a green triangle.

126

127

2.2 ATS model setup and initialization128

The Advanced Terrestrial Simulator (ATS) is an integrated surface-subsurface, distributed129

hydrologic model that computes the diffusion wave approximation of the 2-D St-Venant equations for130
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overland flow and the 3-D Richards equation for groundwater flow (Coon et al., 2019, 2020). Energy131

balance equations are used to simulate land surface processes such as ET and snowmelt. The code’s132

high performance enables it to be parallelized on supercomputers, allowing it to run on hundreds to133

thousands of processors simultaneously.134

The Watershed Workflow Python package (v1.2) was used to create the baseline model (Coon135

and Shuai, 2022). This package combines multiple data streams, identifies the watershed area, and136

produces a variable resolution mesh with a more refined resolution near the stream network. The137

mesh is triangular in shape and was created using the Digital Elevation Model (DEM) from the138

National Elevation Dataset (NED) with a 30 m resolution. The mesh’s horizontal resolution varied139

from 250 m near the stream network to 320 m further away.140

For the subsurface, the domain was divided into 16 terrain following layers, with a total thickness141

of 24 m. The top 2 m of the domain is made up of soil layers, and the vertical resolution of the142

mesh increased from 0.25 m at the surface to 2 m at the bottom. The thickness of the first five143

layers is 0.25, 0.25, 0.5, 1.0, and 2.0 m, respectively, while the remaining layers are 2𝑚 thick. The144

model consists of 125,664 cells, and the depth-to-bedrock (DTB) ranges from 6.5 m to 24.1 m as145

determined from SoilGrids (Shangguan et al., 2017). The geologic layers are sandwiched between146

the soil and bedrock layers.147

The SSURGO soils database was used to identify and map 52 distinct soil types within the soil148

layer. Similarly, 11 different types of raw geologic materials were identified and mapped within the149

geologic layer using data from the GLHYMPS 2.0 dataset (Huscroft et al., 2018). The permeability150

and porosity values were obtained from the SSURGO database. Soil properties from SSURGO was151

then used in conjunction with Rosseta v3, a pedotransfer function that relates the percentages of152

sand, silt, and clay to van Genutchen parameters, as described by (Zhang and Schaap, 2017). For the153

geology types, the permeability and porosity values were retrieved from the GLHYMPS database. A154

confining layer was assumed to exist due to the negligible permeability (1×10−17 𝑚2) of the bedrock.155

The model was first initiated for 1000 years using the annual mean precipitation (∼ 1690𝑚𝑚/𝑦𝑟)156

as the spin-up. This resulted in steady state model outputs at the final timestep, which was then157

used as the initial condition for a 10-year transient simulation. The transient simulation was driven158

by smoothed meteorological forcing data obtained from the DayMet dataset (Thornton et al., 2021).159

The model state at the end of the 10-year transient run was used as the initial condition for the160

transient run shown in the Results section, which occurred from October 1, 2013, to October 1, 2016.161

The DayMet forcing data is a gridded dataset with a resolution of 1 𝑘𝑚 and covers the entire North162

American region. Precipitation, air temperature, incoming shortwave radiation, and vapor pressure163

data were mapped onto the meshes and prescribed throughout the simulation.164

2.3 Model calibration165

The model was calibrated using a newly developed knowledge-informed deep learning ap-168

proach (Jiang et al., 2022). The approach leverages mutual information (MI)-based sensitivity169

analysis to guide the selection of the sensitive model responses (e.g., streamflow) which is used to170

estimate each parameter based on a neural network. The previous study successfully employed this171

approach to calibrate ATS in another snow-dominated watershed using a few hundred realizations.172

Due to a large number of uncertain parameters, both soil and geology types were simplified using173

k-mean clustering to reduce the number of parameters for calibration. The spatial distribution of the174

clustered soil and geological layers is shown in Figure 2. A MI-based preliminary sensitivity analysis175

was first performed to narrow down the parameters to be calibrated using 50 ensemble runs. This176

leads to a total of 14 parameters to be calibrated, including five soil permeability (i.e., s1, s3, s4, s5,177

and s6), three geologic layer permeability (i.e., g1, g2, and g4), three evapotranspiration (ET) param-178

eters (i.e., Priestly Taylor alpha-canopy transpiration, Priestly Taylor alpha-snow evaporation, and179

Priestly Taylor alpha-ground evaporation), two snowmelt parameters (i.e., snowmelt rate and air-180

snow temperature difference), and one Manning’s coefficient (i.e., manning n). Then, 323 ensemble181

runs were generated by varying the down-selected 14 parameters to perform a full sensitivity analysis182

and model calibration. Each run consisted of three years of simulation (i.e., October 2013 - October183
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2016) with the last two years being used as the calibration period. For each parameter, an inverse184

mapping was constructed based on a fully-connected neural network to estimate the parameter from185

the corresponding sensitive streamflow observations. Ensemble runs were used to train and tune186

the structure of the neural network. Observations were used to estimate the parameters through the187

trained neural network.

Figure 2. Watershed inputs include soil type, geology type, depth to bedrock and land cover type as generated
using the Watershed Workflow v1.2. The soil and geology types have been clustered using k-mean clustering.

166

167

188

2.4 Streambed characteristics189

Streambed geometry such as width and depth was determined based on the discretization of190

the meshes (Figure 3). To examine the effects of streambed width, we applied different refinements191

near the stream network to make the finest mesh resolution close to the targeted streambed width192

(e.g., 50 m, 150 m and 250 m). For different mesh refinements, only the meshes near the streams193

were refined while keeping the meshes near the boundary at a coarser resolution (∼ 300 𝑚). The194

streambed was then determined by the meshes that overlap with the river network. The streambed195

depth was determined based on vertical discretization. For example, a streambed with a width of196

250 m and a thickness of 0.5 m indicates that the streambed consists of meshes with an average197

horizontal resolution of 250 m located within the top 0.5 m. The entire streambed was assigned the198

same property.199

To investigate the effects of streambed properties, we systematically varied the streambed K202

from 0.1 to 10 m/d and thickness from 0.25 to 1.0 m based on the reported literature values (Table 1)203

(Calver, 2001; Cardenas and Zlotnik, 2003; Genereux et al., 2008). For example, the streambed K204

was found to range from 0.001 to 100 m/d based on 41 different field and numerical studies (Calver,205

2001). Our baseline model assumed zero thickness of the riverbed and the river region shared the206

same K values with the underlying sediments.207
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Figure 3. Watershed meshes in different streambed resolutions. The zoomed-into insert shows the finest
mesh near the stream network.

200

201

Table 1. Model cases with various sets of streambed K, thickness, and width208

Case Streambed K [m/d] Streambed thickness
[m]

Streambed width [m]

base same as soil K 0.0 250
1 1.0 0.5 250
2 0.1 0.5 250
3 0.1 0.5 250
4 1.0 0.25 250
5 1.0 1.0 250
6 1.0 0.5 50
7 1.0 0.5 150

3 Results209

The calibrated model showed good performance in simulated versus observed streamflow210

(mKGE=0.62) (Figure 4). The following results focused on hydrologic exchange fluxes across211

the streambed as well as the streamflow at the watershed outlet.212

3.1 Exchange fluxes across the streambed–baseline case215

The exchange flux showed strong spatial and temporal heterogeneity across streambeds in216

response to precipitation events. Temporally, the river was predominantly gaining (i.e., flow from the217

groundwater into the river) all year round as indicated by the positive mean exchange fluxes (Figure218

5(A)). The river was relatively more gaining during the snowmelt and rainfall period in the winter219

and spring compared to that during the dry period in the summer. For example, Figure 5(B) showed220

the spatial distribution of the exchange flux across the streambed on April 1st, 2015, and October221

1st, 2015, which corresponded to the peak of the wet (April) and dry (October) season of that year.222

Those two selected snapshots showed large differences in the magnitude as well as the directions of223

the exchange fluxes. In general, the river was less gaining and losing in the dry season compared to224

that in the wet season.225

Spatially along the main stem (i.e., 3rd order stream), the river showed hot spots of exchange230

fluxes at several locations, especially during large precipitation events (Figure 5A). The heat map of231

exchange fluxes across the main stem was plotted from the farthest upstream location (i.e., 22 km) to232

the outlet (i.e., 0 km). These hot spots of exchange fluxes corresponded to the locations of confluence233

and geomorphic features such as meanders. For example, at the start of the main stem (22 km from234

the outlet, Location A in Figure 1), the main stem of the stream was strongly gaining as it was235
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Figure 4. Simulated streamflow shows good performance (KGE=0.62) against observed streamflow using the
calibrated baseline model.

213

214

joined by two subcatchments in the headwaters. Similarly, the river was gaining during snowmelt236

and large precipitation events at a distance of 15 km from the outlet (location B in Figure 1) as the237

main stem was joined by a large tributary on the left side of the river. The exchange flux also showed238

large variation by stream orders (Figure S1). The second-order stream had the largest variability and239

median value, whereas the first- and third-order streams showed less variability. Though all streams240

were primarily gaining, a significant portion of the second-order stream was losing.241

3.2 Effects of streambed hydraulic conductivity and thickness242

Larger streambed hydraulic conductivity induced larger exchange fluxes across the streambed,243

assuming the streambed thickness and width were the same (Figure 6). The differences were larger244

in the wet season compared to those in the dry season. By changing K from 0.1 to 10 m/d, the mean245

exchange flux increased from 16.6 mm/d to 19.3 mm/d, though the differences in streamflow at the246

watershed outlet were insignificant (Figure S2). In comparison, the exchange flux under the baseline247

model was almost identical to that under K=10 m/d.248

Larger streambed thickness induced smaller exchange fluxes across the streambed, assuming the251

streambed K and width remained the same (Figure 6). This also assumed streambed K (i.e., 1 m/d)252

was smaller than the K of the surrounding soil/geology sediments. Similarly, the largest difference253

in exchange flux occurred in the wet period, whereas the smallest difference occurred in the dry254

period. By changing thickness from 0.25 m to 1.0 m, the mean exchange flux decreased from 17.9255

mm/d to 15.6 mm/d, though the discharge at the watershed outlet remained unchanged (Figure S3).256

In comparison, the exchange flux from the baseline model was equal to or larger than that under a257

thickness of 0.25 m since the streambed layer did not exist in the baseline model.258
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Figure 5. Sptial and temporal variability of exchange fluxes across streambeds. (A) Exchange flux heat map
across the main stem (i.e., third-order) stream shows strong spatial and temporal variability. (B) Snapshots show
exchange fluxes across the streambed during wet (April 1, 2015) versus dry (October 1, 2015) period as well as
the flux differences between those two snapshots.

226

227

228

229

3.3 Effects of streambed width (resolution)259

A smaller streambed width (or finer streambed resolution) induced larger exchange fluxes per260

unit area, but with an overall smaller exchange volume across the whole watershed (Figure 7). By261

refining the streambed width from 250 m to 50 m, the mean exchange flux increased from 17.7262

mm/d to 45.8 mm/d, which was a 150% increase. On the contrary, the total exchange flux across the263

entire streambed decreased from 3.58e5 𝑚3/𝑑 to 1.79e5 𝑚3/𝑑 as the streambed resolution increased264

from 250 m to 50 m. The cumulative exchange volume during the two-year period showed a 50 %265

decrease. In comparison, the exchange flux from the baseline model showed similar exchange flux266

magnitude and patterns with those from the 250-m width model due to the same streambed resolution267

being used.268

Within each stream order, smaller streambed width showed larger exchange fluxes in both271

magnitude and variability (Figure 8). Across stream orders, the third-order stream showed the largest272

median exchange flux, whereas the second-order stream showed the largest variability. However, as273

the stream width decreased (or resolution increased), the median exchange flux in the second-order274

stream became significantly (p < 0.05 using a Mann-Whiteney 𝑈 test) smaller than those in the275

other stream orders. The results highlighted the importance of using a finer streambed resolution to276

capture the exchange flux patterns across and within stream orders.277

The accumulative baseflow was lower under a smaller streambed width (or a finer resolution)282

(Figure 9), though the watershed discharge showed a marginal difference (Figure S4). By refining283

the streambed width from 250 m to 50 m, the temporal baseflow flux decreased especially in the284

–9–



Confidential manuscript submitted to Hydrological Processes

Figure 6. Larger streambed K induces larger exchange fluxes. Larger streambed thickness induces smaller
exchange fluxes. In reference, the baseline model has K ≈ 10 m/d and thickness = 0 m.

249

250

wet period. The accumulative baseflow decreased from 1.54 m to 1.45 m per watershed area (a 6%285

decrease). The percentage of baseflow relative to the watershed discharge decreased from 51% to286

48%.287

4 Discussion291

4.1 Is an explicit representation of streambed important?292

Without an explicit representation of the streambed, the watershed model using the default293

permeability of the soil on top tends to overestimate the exchange flux. Compared to the baseline294

model, an explicit representation of a streambed with different K and thickness showed a significant295

difference in both exchange flux magnitude and variability (Figure 6). In general, streambeds with a296

larger K combined with a thicker layer promoted the hydrologic exchange fluxes between the river and297

aquifer. However, the shallower streambed sediment usually has a lower K than the deeper sediments298

due to abiotic (fine sediments) and biotic (microorganisms) clogging (Datry et al., 2015; Min et al.,299

2013; Shrivastava et al., 2020b). For example, Min et al. (2013) showed that the K measured from300

a clogged streambed was 3 to 4 orders of magnitude lower than that measured from an unclogged301

streambed. Without a representation of the less permeable streambed layer, the exchange fluxes302

would be overestimated as shown in Figure 6.303

To represent the streambed layer, streambed properties including K and thickness are required304

as model inputs, however, they are rarely available and are difficult to measure especially across the305

entire watershed (Korus et al., 2020; Abimbola et al., 2020). Traditionally, streambed K is measured306

using slug tests or inferred from the grain size distribution of the sediment, which is labor-intensive307
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Figure 7. Larger streambed width (resolution) induces smaller exchange fluxes per unit area but overall larger
exchange flux volume. In reference, the baseline model has a streambed width of 250 m.

269

270

and cannot be easily scaled up to the entire watershed. Recently, Abimbola et al. (2020) developed308

new pedo-transfer functions using the Multi-Stemmed Nested Funnel approach to predict the vertical309

streambed K variability based on watershed characteristics including drainage area and percent310

organic matter, which are readily available in the National Resources Conservation Service (NRCS)311

Soil Survey Geographic (SSURGO) soils database. This provides a cost-effective way to estimate312

the spatial distribution of streambed K across different stream orders.313

4.2 Is a high-resolution streambed needed for watershed simulations?314

Mesh resolution has a marginal impact on the watershed outlet discharge. This is because315

the percentage of streambed area in our study site is less than 15% of the entire watershed area,316

which had little impact on the overland flow processes. Additionally, the majority of the watershed317

mesh resolution remained constant due to the refinement only occurring near the stream network.318

As a result, most of the topography and land cover remained the same, especially in the high319

elevation where snow accumulated. The watershed discharge would become more sensitive to the320
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Figure 8. A boxplot showing the variability of exchange flux across different stream orders under different
streambed widths. Within each stream order, smaller streambed width showed larger exchange fluxes in both
magnitude and variability. Across stream orders, the third-order stream showed the largest median exchange
flux, whereas the second-order stream showed the largest variability.

278

279

280

281

mesh resolution if it is uniformly changed across the landscape (Sulis et al., 2011; Foster et al.,321

2020). Foster et al. (2020) found that uniformly coarsening the mesh from 100 m to 1 km resulted322

in a 4% reduction in predicted streamflow under climate change using ParFlow. The decrease323

in the streamflow as a result of mesh coarsening was mainly due to the decrease in local terrain324

slope and plan curvature variation, which limited the amount of water transmitted laterally and325

downslope (Sulis et al., 2011). On the contrary, streambeds with a coarse mesh resolution slightly326

overestimated the watershed base flow (Figure 9). The accumulated base flow increased by 6% as327

the streambed resolution decreased from 50 m to 250 m. The increase in base flow was the result328

of a larger streambed area represented in the coarser streambed resolution model, which facilitated329

groundwater exfiltration out of the streambed.330

Models using coarse streambed resolutions underestimate the magnitude and variability of331

exchange fluxes but overestimate the total exchange volume (Figure 7). They also undermine the332

relative difference in the exchange flux variability among different stream orders (Figure 8). This is333

mainly due to the fact that a finer mesh resolution model better preserves the topographic features334

such as meanders, pools, and riffles, which have been demonstrated to be the hot spots of exchange335

fluxes (Shuai et al., 2019; Cardenas, 2008; Tonina and Buffington, 2007). In a previous study,336

Brookfield et al. (2017) showed that increasing mesh resolution along the streambed allowed for the337

topography-driven exchange flux variability to be accounted for using HydroGeoSphere.338

The variability and magnitude of exchange fluxes across the streambed are the main drivers339

for hot spots and hot moments of biogeochemical reactions in river corridors (Dwivedi et al., 2018;340

Zarnetske et al., 2011; Shuai et al., 2017). Without a high-resolution model, the biogeochemical341

reactions could be greatly underestimated. For example, our results showed that the mean exchange342

flux per unit area was greatly increased along with its variability under a 50 m resolution compared343
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Figure 9. The cumulative base flow decreased slightly as the streambed width decreased from 250 m to 50 m
while the streambed thickness (0.5 m) and K (1 m/d) remain the same. The base flow under the baseline model
overlaps with that of the 250 m resolution model.

288

289

290

to that under a 250 m resolution (Figure 7 and 8). The larger exchange fluxes in the 50 m resolution344

model may promote the exchange of nutrients between surface water and groundwater and impact345

the associated biogeochemical processes in the watershed.346

In summary, a high-resolution streambed is preferred if exchange fluxes and biogeochemical347

processes are of interest. Distributed watershed models should refine the meshes near the streambeds348

to accurately capture the exchanges between surface water and groundwater. However, the streambed349

mesh resolution plays an insignificant role in watershed streamflow generation.350

4.3 Limitations and future work351

Using high-resolution streambeds in integrated hydrologic models increases the computational352

cost. Even though we can save computational cost by taking the advantage of unstructured meshing353

capability, the total number of grid cells still significantly increases as the streambed is further354

refined. For example, by refining meshes from 250 m to 50 m in ATS, the total number of grid355

cells increased from 125,664 to 621,968, a five-fold increase. In our study, it took ∼ 17 hrs for the356

50-m model to finish three years of simulation using 256 cores compared to ∼ 4 hrs for the 250-m357

model to finish the same number of years using 64 cores. In headwater streams, the actual streambed358

width may be even smaller (e.g., 10 to 20 m), and thus requires further mesh refinement near the359

stream network. If 10 m mesh resolution were used for our watershed, the total number of meshes360

would be over 3 million. The computational cost would be unmanageable despite the increase in361

computational power offered by high-performance computing systems.362
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High-resolution models often require high-resolution datasets and extensive parameterization.363

Recent remote sensing product enables the DEM to be mapped at 1 m or less resolution. However,364

the river bathymetry data is not widely available in most watersheds, which is critical for representing365

fine-scale river morphology including bars, pools, and riffles. The bathymetry data becomes more366

important in higher-order streams due to larger variability in river bathymetry. Fortunately, estimating367

river bathymetry in rivers wider than 50 m will become possible thanks to the newly launched Surface368

Water and Ocean Topography (SWOT, https://swot.jpl.nasa.gov, last accessed on January 4, 2023)369

satellite. SWOT will provide water surface elevation, width, and slope that could be used as input to370

inverse models to retrieve river bathymetry and roughness coefficients (Yoon et al., 2012).371

Assuming homogeneity of K across the streambeds in watershed models often leads to the under-372

or over-prediction of exchange fluxes across the streambed (Abimbola et al., 2020). Streambed K373

is highly heterogeneous with K varying several orders of magnitude even in the same stream order.374

For example, higher K usually occurred in upwelling versus downwelling areas (Datry et al., 2015).375

However, there is a lack of data to quantify the heterogeneous distribution of streambed K, and it is376

not practical to measure it everywhere.377

In the future, we plan to quantify the effects of exchange fluxes on watershed biogeochemical378

cycling by incorporating biogeochemical reactions into the watershed hydrologic models. This can379

be accomplished by coupling ATS with PFLOTRAN via the Alquimia interface (Andre et al., 2013),380

which has been demonstrated in a recent publication (Molins et al., 2022).381

5 Conclusions382

We investigated the effects of streambed properties including hydraulic conductivity, layer383

thickness, and width (resolution) on watershed hydrological processes by explicitly representing384

streambed in an integrated watershed model. To the best of our knowledge, this is the first of its kind385

study to illustrate the role of streambed representation and its properties on exchange fluxes between386

surface water and groundwater at the watershed scale. Our results showed that the exchange flux was387

spatially and temporally heterogeneous across different stream orders in response to precipitation388

events. Watershed models without an explicit representation of the streambed tend to overestimate the389

exchange flux, though its impact on watershed streamflow is negligible. Generally, larger streambed390

hydraulic conductivity along with a thicker streambed layer induced larger exchange fluxes. The391

exchange fluxes were most sensitive to the streambed width or the mesh resolution of the streambed.392

A smaller streambed width (or finer streambed resolution) induced larger exchange fluxes per unit393

area, but smaller exchange volume across the entire streambed. As a result, The amount of baseflow394

decreased by 6% as the streambed width decreased from 250 m to 50 m. Within each stream395

order, a model with smaller streambed width showed a larger exchange flux in both magnitude and396

variability, which may promote the exchange of nutrients and contaminants between surface water397

and groundwater, resulting in hot spots and hot moments of biogeochemical reactions. Our study398

calls for the high-resolution representation of streambeds in watershed models when hydrologic399

exchange fluxes and biogeochemical processes are of particular interest. Future studies should focus400

on characterizing the heterogeneity of streambeds through the advanced field and statistical methods401

to parameterize watershed models.402
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