Reference
[1] Kolodkin-Gal, I. et al. Respiration control of multicellularity
in Bacillus subtilis by a complex of the cytochrome chain with a
membrane-embedded histidine kinase. Genes Dev. 27, 887-99 (2013).
[2] Arnaouteli, S. et al. Bifunctionality of a biofilm matrix
protein controlled by redox state. Proc. Natl Acad. Sci. USA 114,
E6184-E6191 (2017).
[3] Stefanic, P. & Mandic-Mulec, I. Social interactions and
distribution of Bacillus subtilis pherotypes at microscale. J.
Bacteriol. 191, 1756-1764 (2009).
[4] Oslizlo, A., Stefanic, P., Dogsa, I. & Mandic-Mulec, I. Private
link between signal and response in Bacillus subtilis quorum sensing.
Proc. Natl Acad. Sci. USA 111, 1586-1591 (2014).
[5] Qin, Y. et al. Heterogeneity in respiratory electron transfer
and adaptive iron utilization in a bacterial biofilm. Nat. Commun. 10,
3702 (2019).
[6] Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R.
Sticking together: building a biofilm the Bacillus subtilis way. Nat.
Rev. Microbiol. 11, 157-168 (2013).
[7] Even-Tov, E. et al. Social evolution selects for redundancy in
bacterial quorum sensing. PLoS Biol. 14, e1002386 (2016).
[8] Pollak, S. et al. Facultative cheating supports the coexistence
of diverse quorum-sensing alleles. Proc. Natl Acad. Sci. USA 113,
2152-2157 (2016).
[9] Okegbe, C., Price-Whelan, A. & Dietrich, L.E. Redox-driven
regulation of microbial community morphogenesis. Curr. Opin. Microbiol.
18, 39-45 (2014).
[10] Zhao, L. et al. Isocitrate dehydrogenase of Bacillus cereus is
involved in biofilm formation. World J. Microbiol. Biotechnol. 37, 207
(2021).
[11] Pisithkul, T. et al. Metabolic Remodeling during Biofilm
Development of Bacillus subtilis. mBio. 10, e00623-19 (2019).
[12] Arjes, H.A. et al. Biosurfactant-mediated membrane
depolarization maintains viability during oxygen depletion in Bacillus
subtilis. Curr. Biol. 30, 1011-1022.e6 (2020).
[13] Lin, A.A. & Zuber, P. Evidence that a single monomer of Spx
can productively interact with RNA polymerase in Bacillus subtilis. J.
Bacteriol. 194, 1697-707 (2012).
[14] Lin, A.A., Walthers, D. & Zuber, P. Residue substitutions near
the redox center of Bacillus subtilis Spx affect RNA polymerase
interaction, redox control, and Spx-DNA contact at a conserved
cis-acting element. J. Bacteriol. 195, 3967-78 (2013).
[15] Rochat, T. et al. Genome-wide identification of genes directly
regulated by the pleiotropic transcription factor Spx in Bacillus
subtilis. Nucleic Acids Res. 40, 9571-83 (2012).
[16] Schäfer, H. & Turgay, K. Spx, a versatile regulator of the
Bacillus subtilis stress response. Curr. Genet. 65, 871-876 (2019).
[17] Duarte, V. & Latour, J.M. PerR vs OhrR: selective peroxide
sensing in Bacillus subtilis. Mol. Biosyst. 6, 316-23 (2010).
[18] Ma, Z., Lee, J.W. & Helmann, J.D. Identification of altered
function alleles that affect Bacillus subtilis PerR metal ion
selectivity. Nucleic Acids Res. 39, 5036-44 (2011).
[19] Faulkner, M.J., Ma, Z., Fuangthong, M. & Helmann, J.D.
Derepression of the Bacillus subtilis PerR peroxide stress response
leads to iron deficiency. J. Bacteriol. 194, 1226-35 (2012).
[20] Chen, B., Wen, J., Zhao, X., Ding, J. & Qi, G. Surfactin: A
quorum-sensing signal molecule to relieve CCR in Bacillus
amyloliquefaciens . Front. Microbiol. 11, 631 (2020).
[21] Xu, Z. et al. Antibiotic Bacillomycin D Affects Iron
Acquisition and Biofilm Formation in Bacillus velezensis through a
Btr-Mediated FeuABC-Dependent Pathway. Cell Rep. 29, 1192-1202.e5
(2019).
[22] Ghribi, D. & Ellouze-Chaabouni, S. Enhancement of Bacillus
subtilis lipopeptide biosurfactants production through optimization of
medium composition and adequate control of aeration. Biotechnol. Res.
Int. 2011, 653654 (2011).
[23] Bao, T. et al. Regulation of the NADH pool and NADH/NADPH ratio
redistributes acetoin and 2,3-butanediol proportion in Bacillus
subtilis. Biotechnol. J. 10, 1298-306 (2015).
[24] Yang, T. et al. Metabolic engineering of Bacillus subtilis for
redistributing the carbon flux to 2,3-butanediol by manipulating NADH
levels. Biotechnol. Biofuels 8, 129 (2015).
[25] Dietrich, L.E. et al. Bacterial community morphogenesis is
intimately linked to the intracellular redox state. J. Bacteriol. 195,
1371-80 (2013).
[26] Otto, S.B. et al. Privatization of Biofilm Matrix in
Structurally Heterogeneous Biofilms. mSystems 5, e00425-20 (2020).
[27] Liu, Y. et al. Root-secreted spermine binds to Bacillus
amyloliquefaciens SQR9 histidine kinase KinD and modulates biofilm
formation. Mol. Plant Microbe Interact. 33, 423-432 (2020).
[28] Ohsawa, T., Tsukahara, K., Sato, T. & Ogura, M. Superoxide
stress decreases expression of srfA through inhibition of transcription
of the comQXP quorum-sensing locus in Bacillus subtilis. J. Biochem.
139, 203-11 (2006).
[29] Kim, J.H. et al. The difference in in vivo sensitivity between
Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the
different cellular environments. Biochem. Biophys. Res. Commun. 484,
125-131 (2017).
[30] Kobayashi, K. Inactivation of cysL Inhibits Biofilm Formation
by Activating the Disulfide Stress Regulator Spx in Bacillus subtilis.
J. Bacteriol. 201, e00712-18 ( 2019).
[31] Pamp, S.J., Frees, D., Engelmann, S., Hecker, M. & Ingmer, H.
Spx is a global effector impacting stress tolerance and biofilm
formation in Staphylococcus aureus. J. Bacteriol.188, 4861-70 (2006).
[32] Ahn, B.E., Baker, T.A. Oxidization without substrate unfolding
triggers proteolysis of the peroxide-sensor, PerR. Proc. Natl Acad. Sci.
USA 113, E23-31(2016) .
[33] Brekasis, D. & Paget, M.S. A novel sensor of
NADH/NAD+ redox poise in Streptomyces coelicolor
A3(2). EMBO J. 22, 4856-65 (2003).
[34] Wang, E. et al. Structure and functional properties of the
Bacillus subtilis transcriptional repressor Rex. Mol. Microbiol. 69,
466-78 (2008).
[35] Qi, G. et al. Deletion of meso-2,3-butanediol dehydrogenase
gene budC for enhanced D-2,3-butanediol production in Bacillus
licheniformis. Biotechnol. Biofuels 7, 16 (2014).
[36] Dufour, S. et al. Hemolytic activity of new linear surfactin
analogs in relation to their physico-chemical properties. Biochim.
Biophys. Acta 1726, 87-95 (2005).
[37] Müller, S., Strack, S.N., Ryan, S.E., Kearns, D.B. & Kirby,
J.R. Predation by Myxococcus xanthus induces Bacillus subtilis to form
spore-filled megastructures. Appl. Environ. Microbiol. 81, 203-10
(2015).
[38] Wen, J., Zhao, X., Si, F. & Qi, G. Surfactin, a quorum sensing
signal molecule, globally affects the carbon metabolism in Bacillus
amyloliquefaciens. Metab. Eng. Commun. 12, e00174 (2021).