References
1 Giuli, M. V., Mancusi, A., Giuliani, E., Screpanti, I. & Checquolo, S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. Cancer Drug Resistance 4 , 805-836, doi:10.20517/cdr.2021.53 (2021).
2 Fusco, G. & Minelli, A. Phenotypic plasticity in development and evolution: facts and concepts. Introduction. Philos Trans R Soc Lond B Biol Sci 365 , 547-556, doi:10.1098/rstb.2009.0267 (2010).
3 Smigiel, J. M. et al. Cellular plasticity and metastasis in breast cancer: a pre- and post-malignant problem. J Cancer Metastasis Treat 5 , doi:10.20517/2394-4722.2019.26 (2019).
4 Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review.Adv Pharm Bull 7 , 339-348, doi:10.15171/apb.2017.041 (2017).
5 Shen, S. & Clairambault, J. Cell plasticity in cancer cell populations. F1000Res 9 , doi:10.12688/f1000research.24803.1 (2020).
6 Faurobert, E., Bouin, A.-P. & Albiges-Rizo, C. Microenvironment, tumor cell plasticity, and cancer. Current Opinion in Oncology27 , 64-70, doi:10.1097/cco.0000000000000154 (2015).
7 Zhang, R., Tu, J. & Liu, S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Seminars in Cancer Biology 82 , 11-25, doi:https://doi.org/10.1016/j.semcancer.2021.03.008 (2022).
8 Wang, X. & Thiery, J. P. Harnessing Carcinoma Cell Plasticity Mediated by TGF-β Signaling. Cancers 13 , 3397 (2021).
9 Moo, T. A., Sanford, R., Dang, C. & Morrow, M. Overview of Breast Cancer Therapy. PET Clin 13 , 339-354, doi:10.1016/j.cpet.2018.02.006 (2018).
10 Kong, D., Hughes, C. J. & Ford, H. L. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 7 , 72, doi:10.3389/fmolb.2020.00072 (2020).
11 Mohapatra, T. & Dixit, M. IQ Motif Containing GTPase Activating Proteins (IQGAPs), A-Kinase Anchoring Proteins (AKAPs) and Kinase Suppressor of Ras Proteins (KSRs) in Scaffolding Oncogenic Pathways and Their Therapeutic Potential. ACS Omega 7 , 45837-45848, doi:10.1021/acsomega.2c05505 (2022).
12 Guo, Y. J. et al. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 19 , 1997-2007, doi:10.3892/etm.2020.8454 (2020).
13 Ahn, N. G. The MAP kinase cascade. Discovery of a new signal transduction pathway. Molecular and Cellular Biochemistry127 , 201-209, doi:10.1007/BF01076771 (1993).
14 Morrison, D. K. MAP kinase pathways. Cold Spring Harb Perspect Biol 4 , doi:10.1101/cshperspect.a011254 (2012).
15 Turner, N. & Blythe. Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. Journal of Cardiovascular Development and Disease 6 , 27, doi:10.3390/jcdd6030027 (2019).
16 Sinkala, M., Nkhoma, P., Mulder, N. & Martin, D. P. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies.Communications Biology 4 , 9, doi:10.1038/s42003-020-01552-6 (2021).
17 Balko, J. M. et al. Activation of MAPK Pathways due to DUSP4 Loss Promotes Cancer Stem Cell-like Phenotypes in Basal-like Breast CancerDUSP4 Loss Promotes CSC Phenotypes in Basal-like Breast Cancer.Cancer research 73 , 6346-6358 (2013).
18 Iwanaga, R. et al. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways. Breast Cancer Research 14 , 1-14 (2012).
19 Al-Mahdi, R. et al. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhesion & Migration 9 , 483-494, doi:10.1080/19336918.2015.1112485 (2015).
20 Ray, T., Ryusaki, T. & Ray, P. S. Therapeutically Targeting Cancers That Overexpress FOXC1: A Transcriptional Driver of Cell Plasticity, Partial EMT, and Cancer Metastasis. Front Oncol 11 , 721959, doi:10.3389/fonc.2021.721959 (2021).
21 Sala, M. et al. Discoidin Domain Receptor 2 orchestrates melanoma resistance combining phenotype switching and proliferation.Oncogene 41 , 2571-2586, doi:10.1038/s41388-022-02266-1 (2022).
22 Valipour, M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action.European Journal of Medicinal Chemistry 235 , 114314, doi:https://doi.org/10.1016/j.ejmech.2022.114314 (2022).
23 Chen, W. et al. Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 7 , 38, doi:10.1038/s41389-018-0047-5 (2018).
24 Lu, H. et al. Reciprocal Regulation of DUSP9 and DUSP16 Expression by HIF1 Controls ERK and p38 MAP Kinase Activity and Mediates Chemotherapy-Induced Breast Cancer Stem Cell Enrichment. Cancer Research 78 , 4191-4202, doi:10.1158/0008-5472.Can-18-0270 (2018).
25 Shah, S. et al. Downregulation of Rap1Gap: A Switch from DCIS to Invasive Breast Carcinoma via ERK/MAPK Activation. Neoplasia (New York, N.Y.) 20 , 951-963, doi:10.1016/j.neo.2018.07.002 (2018).
26 Wu, M. & Zhao, H. Analysis of key genes and pathways in breast ductal carcinoma <em>in&nbsp;situ</em>.Oncol Lett 20 , 217, doi:10.3892/ol.2020.12080 (2020).
27 17th International Congress of Immunology, 19–23 October 2019, Beijing, China. European Journal of Immunology 49 , 1-2223, doi:https://doi.org/10.1002/eji.201970400 (2019).
28 Dutta, P., Sarkissyan, M., Paico, K., Wu, Y. & Vadgama, J. V. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Research and Treatment170 , 477-486, doi:10.1007/s10549-018-4760-8 (2018).
29 Kolliopoulos, C., Lin, C. Y., Heldin, C. H., Moustakas, A. & Heldin, P. Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biol 80 , 29-45, doi:10.1016/j.matbio.2018.09.002 (2019).
30 BeLow, M. & Osipo, C. Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 9 , 2204 (2020).
31 Shi, X. et al. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep19 , 4529-4535, doi:10.3892/mmr.2019.10121 (2019).
32 Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology 13 , 195-203, doi:10.1038/nrm3290 (2012).
33 Beyens, M., Vandamme, T., Peeters, M., Van Camp, G. & Op de Beeck, K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocrine-Related Cancer 26 , R109-R130, doi:10.1530/erc-18-0420 (2019).
34 Tran, P., Nguyen, C. & Klempner, S. Targeting the Phosphatidylinositol-3-kinase Pathway in Gastric Cancer: Can Omics Improve Outcomes? International Neurourology Journal 20 , S131-140, doi:10.5213/inj.1632740.370 (2016).
35 Gupta, S., Kumar, M., Chaudhuri, S. & Kumar, A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway.Journal of Cellular Physiology 237 , 3181-3204, doi:https://doi.org/10.1002/jcp.30782 (2022).
36 Nicolini, A., Ferrari, P. & Duffy, M. Prognostic and Predictive Biomarkers in Breast Cancer: Past, Present and Future. Seminars in Cancer Biology 52 , doi:10.1016/j.semcancer.2017.08.010 (2017).
37 Zhan, C.-H. et al. The cancer-testis antigen a-kinase anchor protein 3 facilitates breast cancer progression via activation of the PTEN/PI3K/AKT/mTOR signaling. Bioengineered 13 , 8478-8489, doi:10.1080/21655979.2022.2051687 (2022).
38 Hu, H. et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann Transl Med 9 , 410, doi:10.21037/atm-21-698 (2021).
39 Ghebeh, H. et al. Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. British Journal of Cancer 111 , 1552-1561, doi:10.1038/bjc.2014.453 (2014).
40 Xu, W., Yang, Z. & Lu, N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr9 , 317-324, doi:10.1080/19336918.2015.1016686 (2015).
41 Cai, M., Li, H., Chen, R. & Zhou, X. MRPL13 Promotes Tumor Cell Proliferation, Migration and EMT Process in Breast Cancer Through the PI3K-AKT-mTOR Pathway. Cancer Manag Res 13 , 2009-2024, doi:10.2147/cmar.S296038 (2021).
42 Wu, D. P. et al. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway.Int J Biol Sci 17 , 2380-2398, doi:10.7150/ijbs.55453 (2021).
43 Wu, D.-P. et al. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway.International Journal of Biological Sciences 17 , 2380-2398, doi:10.7150/ijbs.55453 (2021).
44 Luo, J. et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. Journal of Experimental & Clinical Cancer Research 37 , 23, doi:10.1186/s13046-018-0694-6 (2018).
45 Guo, C. et al. PPA1 Promotes Breast Cancer Proliferation and Metastasis Through PI3K/AKT/GSK3β Signaling Pathway. Front Cell Dev Biol 9 , 730558, doi:10.3389/fcell.2021.730558 (2021).
46 Zhang, Y., Liu, J. L. & Wang, J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis.Eur Rev Med Pharmacol Sci 24 , 3085-3096, doi:10.26355/eurrev_202003_20673 (2020).
47 Ma, J.-h., Qin, L. & Li, X. Role of STAT3 signaling pathway in breast cancer. Cell Communication and Signaling 18 , 33, doi:10.1186/s12964-020-0527-z (2020).
48 Johnston, P. A. & Grandis, J. R. STAT3 signaling: anticancer strategies and challenges. Mol Interv 11 , 18-26, doi:10.1124/mi.11.1.4 (2011).
49 Mirzaei, S. et al. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation.Biomedicine & Pharmacotherapy 133 , 111077, doi:https://doi.org/10.1016/j.biopha.2020.111077 (2021).
50 Gargalionis, A. N., Papavassiliou, K. A. & Papavassiliou, A. G. Targeting STAT3 Signaling Pathway in Colorectal Cancer.Biomedicines 9 , 1016 (2021).
51 Jung, Y. Y. et al. LDL cholesterol promotes the proliferation of prostate and pancreatic cancer cells by activating the STAT3 pathway.Journal of Cellular Physiology 236 , 5253-5264, doi:https://doi.org/10.1002/jcp.30229 (2021).
52 Polakis, P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4 , doi:10.1101/cshperspect.a008052 (2012).
53 Prosperi, J. R. & Goss, K. H. A Wnt-ow of opportunity: targeting the Wnt/beta-catenin pathway in breast cancer. Curr Drug Targets11 , 1074-1088, doi:10.2174/138945010792006780 (2010).
54 Alfarouk, K. O. et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int15 , 71, doi:10.1186/s12935-015-0221-1 (2015).
55 Huth, H. W., Castro-Gomes, T., de Goes, A. M. & Ropert, C. Translocation of intracellular CD24 constitutes a triggering event for drug resistance in breast cancer. Scientific Reports 11 , 17077, doi:10.1038/s41598-021-96449-7 (2021).
56 Jiménez-Salazar, J. E., Damian-Ferrara, R., Arteaga, M., Batina, N. & Damián-Matsumura, P. Non-Genomic Actions of Estrogens on the DNA Repair Pathways Are Associated With Chemotherapy Resistance in Breast Cancer. Front Oncol 11 , 631007, doi:10.3389/fonc.2021.631007 (2021).
57 Mal, A. et al. EpCAM-Mediated Cellular Plasticity Promotes Radiation Resistance and Metastasis in Breast Cancer. Front Cell Dev Biol 8 , 597673, doi:10.3389/fcell.2020.597673 (2020).
58 Siouda, M. et al. CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity.iScience 23 , 101141, doi:https://doi.org/10.1016/j.isci.2020.101141 (2020).
59 Arnold, K. M., Opdenaker, L. M., Flynn, N. J., Appeah, D. K. & Sims-Mourtada, J. Radiation induces an inflammatory response that results in STAT3-dependent changes in cellular plasticity and radioresistance of breast cancer stem-like cells. International Journal of Radiation Biology 96 , 434-447, doi:10.1080/09553002.2020.1705423 (2020).
60 Ahmed, S. et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868 , 118995, doi:https://doi.org/10.1016/j.bbamcr.2021.118995 (2021).
61 Lu, L. et al. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene37 , 5292-5304, doi:10.1038/s41388-018-0340-y (2018).
62 Abreu de Oliveira, W. A. et al. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer. Front Oncol 11 , 705384, doi:10.3389/fonc.2021.705384 (2021).
63 Wan, H., Li, Z., Wang, H., Cai, F. & Wang, L. ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR. Clin Transl Oncol 23 , 902-910, doi:10.1007/s12094-020-02484-7 (2021).
64 Zhong, Z. & Virshup, D. M. Wnt Signaling and Drug Resistance in Cancer. Mol Pharmacol 97 , 72-89, doi:10.1124/mol.119.117978 (2020).
65 Nair, M. G. et al. miR-18a Mediates Immune Evasion in ER-Positive Breast Cancer through Wnt Signaling. Cells11 , doi:10.3390/cells11101672 (2022).
66 Kumar, S. et al. Dll1(+) quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway.Nat Commun 12 , 432, doi:10.1038/s41467-020-20664-5 (2021).
67 BeLow, M. & Osipo, C. Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 9 , doi:10.3390/cells9102204 (2020).
68 Wada, M., Horinaka, M., Yamazaki, T., Katoh, N. & Sakai, T. The dual RAF/MEK inhibitor CH5126766/RO5126766 may be a potential therapy for RAS-mutated tumor cells. PLoS One 9 , e113217, doi:10.1371/journal.pone.0113217 (2014).
69 Hoang, V. T. et al. Dual inhibition of MEK1/2 and MEK5 suppresses the EMT/migration axis in triple-negative breast cancer through FRA-1 regulation. J Cell Biochem 122 , 835-850, doi:10.1002/jcb.29916 (2021).
70 Mohan, C. D. et al. Brucein D modulates MAPK signaling cascade to exert multi-faceted anti-neoplastic actions against breast cancer cells. Biochimie 182 , 140-151, doi:10.1016/j.biochi.2021.01.009 (2021).
71 Cao, Y. et al. RNA-binding protein QKI suppresses breast cancer via RASA1/MAPK signaling pathway. Ann Transl Med9 , 104, doi:10.21037/atm-20-4859 (2021).
72 Li, H., Prever, L., Hirsch, E. & Gulluni, F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers 13 , 3517 (2021).
73 Huang, J. et al. Gigantol inhibits proliferation and enhances DDP-induced apoptosis in breast-cancer cells by downregulating the PI3K/Akt/mTOR signaling pathway. Life Sci 274 , 119354, doi:10.1016/j.lfs.2021.119354 (2021).
74 Ma, Y. et al. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem111 , 104872, doi:10.1016/j.bioorg.2021.104872 (2021).
75 Zhu, K. et al. AKT inhibitor AZD5363 suppresses stemness and promotes anti-cancer activity of 3,3’-diindolylmethane in human breast cancer cells. Toxicol Appl Pharmacol 429 , 115700, doi:10.1016/j.taap.2021.115700 (2021).
76 Prajapati, K. S., Gupta, S. & Kumar, S. Targeting Breast Cancer-Derived Stem Cells by Dietary Phytochemicals: A Strategy for Cancer Prevention and Treatment. Cancers (Basel) 14 , doi:10.3390/cancers14122864 (2022).
77 Kohandel, Z., Farkhondeh, T., Aschner, M., Pourbagher-Shahri, A. M. & Samarghandian, S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int 21 , 468, doi:10.1186/s12935-021-02179-1 (2021).
78 Hosseinzadeh, A., Merikhian, P., Naseri, N., Eisavand, M. R. & Farahmand, L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int 22 , 110, doi:10.1186/s12935-022-02523-z (2022).
79 Liu, Z. et al. Small molecule STAT3 inhibitor, 6Br-6a suppresses breast cancer growth in vitro and in vivo. Biomedicine & Pharmacotherapy 121 , 109502, doi:https://doi.org/10.1016/j.biopha.2019.109502 (2020).
80 Nguyen, N. M. & Cho, J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 23 , doi:10.3390/ijms23031733 (2022).
81 Tsao, A. N., Chuang, Y. S., Lin, Y. C., Su, Y. & Chao, T. C. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep 47 , doi:10.3892/or.2022.8316 (2022).
82 Brennan, K. & Clarke, R. B. Combining Notch inhibition with current therapies for breast cancer treatment. Ther Adv Med Oncol5 , 17-24, doi:10.1177/1758834012457437 (2013).
83 Yen, W. C. et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res21 , 2084-2095, doi:10.1158/1078-0432.Ccr-14-2808 (2015).
84 Jaiswal, A. et al. Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proceedings of the National Academy of Sciences 118 , e2101592118, doi:doi:10.1073/pnas.2101592118 (2021).
85 Torborg, S. R., Li, Z., Chan, J. E. & Tammela, T. Cellular and molecular mechanisms of plasticity in cancer. Trends in Cancer8 , 735-746, doi:https://doi.org/10.1016/j.trecan.2022.04.007 (2022).
86 Qin, S. et al. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy 5 , 228, doi:10.1038/s41392-020-00313-5 (2020).
87 Lüönd, F., Tiede, S. & Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer 125 , 164-175, doi:10.1038/s41416-021-01328-7 (2021).