References
Budge, J. D., Roobol, J., Singh, G., Mozzanino, T., Knight, T. J., Povey, J., Dean, A., Turner, S. J., Jaques, C. M., Young, R. J., Racher, A. J., & Smales, C. M. (2021). A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells.Metabolic Engineering Communications, 13, e00179.
Capella Roca, B., Lao, N., Barron, N., Doolan, P., & Clynes, M. (2019). An arginase-based system for selection of transfected CHO cells without the use of toxic chemicals. The Journal of Biological Chemistry, 294(49), 18756–18768.
Cockett, M. I., Bebbington, C. R., & Yarranton, G. T. (1990). High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/technology ,8(7), 662–667.
Grav, L. M., Lee, J. S., Gerling, S., Kallehauge, T. B., Hansen, A. H., Kol, S., Lee, G. M., Pedersen, L. E., & Kildegaard, H. F. (2015). One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnology Journal, 10(9), 1446–1456.
Kallehauge, T. B., Li, S., Pedersen, L. E., Ha, T. K., Ley, D., Andersen, M. R., Kildegaard, H. F., Lee, G. M., & Lewis, N. E. (2017). Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion.Scientific Reports, 7, 40388.
Karottki, K. J. la C., Hefzi, H., Li, S., Pedersen, L. E., Spahn, P. N., Joshi, C., Ruckerbauer, D., Bort, J. A. H., Thomas, A., Lee, J. S., Borth, N., Lee, G. M., Kildegaard, H. F., & Lewis, N. E. (2021). A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metabolic Engineering, 66, 114–122.
Kaufman, R. J., & Sharp, P. A. (1982). Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. Journal of Molecular Biology, 159(4), 601–621.
Lee, J.-H., Park, J.-H., Park, S.-H., Kim, S.-H., Kim, J. Y., Min, J.-K., Lee, G. M., & Kim, Y.-G. (2018). Co-amplification of EBNA-1 and PyLT through dhfr-mediated gene amplification for improving foreign protein production in transient gene expression in CHO cells. In Applied Microbiology and Biotechnology (Vol. 102, Issue 11, pp. 4729–4739). https://doi.org/10.1007/s00253-018-8977-6
Li, F., Vijayasankaran, N., Shen, A. (yijuan), Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production. In mAbs (Vol. 2, Issue 5, pp. 466–479). https://doi.org/10.4161/mabs.2.5.12720
Lund, A. M., Kildegaard, H. F., Petersen, M. B. K., Rank, J., Hansen, B. G., Andersen, M. R., & Mortensen, U. H. (2014). A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.PloS One, 9(5), e96693.
Pourcel, L., Buron, F., Garcia, F., Delaloix, M.-S., Le Fourn, V., Girod, P.-A., & Mermod, N. (2020). Transient vitamin B5 starving improves mammalian cell homeostasis and protein production. Metabolic Engineering,60, 77–86.
Pristovšek, N., Hansen, H. G., Sergeeva, D., Borth, N., Lee, G. M., Andersen, M. R., & Kildegaard, H. F. (2018). Using Titer and Titer Normalized to Confluence Are Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines with High Volumetric Productivity of Etanercept. Biotechnology Journal, 13(3), e1700216.
Sun, T., Kwok, W. C., Chua, K. J., Lo, T.-M., Potter, J., Yew, W. S., Chesnut, J. D., Hwang, I. Y., & Chang, M. W. (2020). Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. ACS Synthetic Biology, 9(7), 1864–1872.
Zhang, Q., Jiang, B., Du, Z., & Chasin, L. A. (2020). A doubly auxotrophic CHO-K1 cell line for the production of recombinant monoclonal antibodies. Biotechnology and Bioengineering, 117(8), 2401–2409.
Zhang, Q., Jiang, B., Nelson, L., Huhn, S., Du, Z., & Chasin, L. A. (2022). A multiauxotrophic CHO cell line for the rapid isolation of producers of diverse or high levels of recombinant proteins. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.28074