References
Budge, J. D., Roobol, J.,
Singh, G., Mozzanino, T., Knight, T. J., Povey, J., Dean, A., Turner, S.
J., Jaques, C. M., Young, R. J., Racher, A. J., & Smales, C. M. (2021).
A proline metabolism selection system and its application to the
engineering of lipid biosynthesis in Chinese hamster ovary cells.Metabolic Engineering Communications, 13, e00179.
Capella Roca, B., Lao, N.,
Barron, N., Doolan, P., & Clynes, M. (2019). An arginase-based system
for selection of transfected CHO cells without the use of toxic
chemicals. The Journal of Biological Chemistry, 294(49),
18756–18768.
Cockett, M. I., Bebbington, C.
R., & Yarranton, G. T. (1990). High level expression of tissue
inhibitor of metalloproteinases in Chinese hamster ovary cells using
glutamine synthetase gene amplification. Bio/technology ,8(7), 662–667.
Grav, L. M., Lee, J. S.,
Gerling, S., Kallehauge, T. B., Hansen, A. H., Kol, S., Lee, G. M.,
Pedersen, L. E., & Kildegaard, H. F. (2015). One-step generation of
triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent
enrichment. Biotechnology Journal, 10(9), 1446–1456.
Kallehauge, T. B., Li, S.,
Pedersen, L. E., Ha, T. K., Ley, D., Andersen, M. R., Kildegaard, H. F.,
Lee, G. M., & Lewis, N. E. (2017). Ribosome profiling-guided depletion
of an mRNA increases cell growth rate and protein secretion.Scientific Reports, 7, 40388.
Karottki, K. J. la C., Hefzi,
H., Li, S., Pedersen, L. E., Spahn, P. N., Joshi, C., Ruckerbauer, D.,
Bort, J. A. H., Thomas, A., Lee, J. S., Borth, N., Lee, G. M.,
Kildegaard, H. F., & Lewis, N. E. (2021). A metabolic CRISPR-Cas9
screen in Chinese hamster ovary cells identifies glutamine-sensitive
genes. Metabolic Engineering, 66, 114–122.
Kaufman, R. J., & Sharp, P.
A. (1982). Amplification and expression of sequences cotransfected with
a modular dihydrofolate reductase complementary dna gene. Journal
of Molecular Biology, 159(4), 601–621.
Lee, J.-H., Park, J.-H., Park,
S.-H., Kim, S.-H., Kim, J. Y., Min, J.-K., Lee, G. M., & Kim, Y.-G.
(2018). Co-amplification of EBNA-1 and PyLT through dhfr-mediated gene
amplification for improving foreign protein production in transient gene
expression in CHO cells. In Applied Microbiology and
Biotechnology (Vol. 102, Issue 11, pp. 4729–4739).
https://doi.org/10.1007/s00253-018-8977-6
Li, F., Vijayasankaran, N.,
Shen, A. (yijuan), Kiss, R., & Amanullah, A. (2010). Cell culture
processes for monoclonal antibody production. In mAbs (Vol. 2,
Issue 5, pp. 466–479).
https://doi.org/10.4161/mabs.2.5.12720
Lund, A. M., Kildegaard, H.
F., Petersen, M. B. K., Rank, J., Hansen, B. G., Andersen, M. R., &
Mortensen, U. H. (2014). A versatile system for USER cloning-based
assembly of expression vectors for mammalian cell engineering.PloS One, 9(5), e96693.
Pourcel, L., Buron, F.,
Garcia, F., Delaloix, M.-S., Le Fourn, V., Girod, P.-A., & Mermod, N.
(2020). Transient vitamin B5 starving improves mammalian cell
homeostasis and protein production. Metabolic Engineering,60, 77–86.
Pristovšek, N., Hansen, H. G.,
Sergeeva, D., Borth, N., Lee, G. M., Andersen, M. R., & Kildegaard, H.
F. (2018). Using Titer and Titer Normalized to Confluence Are
Complementary Strategies for Obtaining Chinese Hamster Ovary Cell Lines
with High Volumetric Productivity of Etanercept. Biotechnology
Journal, 13(3), e1700216.
Sun, T., Kwok, W. C., Chua, K.
J., Lo, T.-M., Potter, J., Yew, W. S., Chesnut, J. D., Hwang, I. Y., &
Chang, M. W. (2020). Development of a Proline-Based Selection System for
Reliable Genetic Engineering in Chinese Hamster Ovary Cells. ACS
Synthetic Biology, 9(7), 1864–1872.
Zhang, Q., Jiang, B., Du, Z.,
& Chasin, L. A. (2020). A doubly auxotrophic CHO-K1 cell line for the
production of recombinant monoclonal antibodies. Biotechnology and
Bioengineering, 117(8), 2401–2409.
Zhang, Q., Jiang, B., Nelson,
L., Huhn, S., Du, Z., & Chasin, L. A. (2022). A multiauxotrophic CHO
cell line for the rapid isolation of producers of diverse or high levels
of recombinant proteins. Biotechnology and Bioengineering.
https://doi.org/10.1002/bit.28074