References
Akula, Arjun R., et al. ”CX-ToM: Counterfactual Explanations with
Theory-of-Mind for Enhancing Human Trust in Image Recognition Models.”arXiv preprint arXiv: 2109.01401 (2021) (accepted to iScience
2021).
Akula, Arjun R., et al. ”CoCoX: Generating Conceptual and Counterfactual
explanations via Fault-Lines.” AAAI, 2020.
Bau, David, et al. ”Gan dissection: Visualizing and understanding
generative adversarial networks.” arXiv preprint arXiv:1811.10597(2018).
Cellan-Jones, R. (2014). Stephen Hawking warns artificial intelligence
could end mankind. BBC news , 2 (10), 2014.
Danesh, Mohamad H., et al. ”Re-understanding Finite-State
Representations of Recurrent Policy Networks.” International
Conference on Machine Learning . PMLR, 2021.
Dikkala, Rupika, et al. ”Doing Remote Controlled Studies with Humans:
Tales from the COVID Trenches.” ACM-IEEE CHASE. 2021.
Edmonds, Mark, et al. ”A tale of two explanations: Enhancing human trust
by explaining robot behavior.” Science Robotics 4.37 (2019).
Folke, Tomas, et al. ”Explainable AI for medical imaging: explaining
pneumothorax diagnoses with Bayesian teaching.” arXiv preprint
arXiv:2106.04684 (2021).
Gibbs, S. Elon Musk leads 116 experts calling for outright ban of killer
robots. The Guardian , 20 , 2017.
Gunning, David, and David Aha. ”DARPA’s explainable artificial
intelligence (XAI) program.” AI Magazine 40.2 (2019): 44-58.
Johnson, W. Lewis. ”Agents that Learn to Explain Themselves.”AAAI . 1994.
Jordan, Michael I., and Tom M. Mitchell. ”Machine learning: Trends,
perspectives, and prospects.” Science 349.6245 (2015): 255-260.
Khorram, Saeed, Tyler Lawson, and Li Fuxin. ”iGOS++ integrated gradient
optimized saliency by bilateral perturbations.” Proceedings of the
Conference on Health, Inference, and Learning . 2021.
Anurag Koul, Alan Fern, and Sam Greydanus. “Learning Finite State
Representations of Recurrent Policy Networks.” International
Conference on Learning Representations. 2019
Kulesza, Todd, et al. ”Principles of explanatory debugging to
personalize interactive machine learning.” Proceedings of the 20th
international conference on intelligent user interfaces . 2015
Lacave, Carmen, and Francisco J. Díez. ”A review of explanation methods
for Bayesian networks.” The Knowledge Engineering Review 17.2
(2002): 107-127.
Letham, Benjamin, et al. ”Interpretable classifiers using rules and
bayesian analysis: Building a better stroke prediction model.” The
Annals of Applied Statistics 9.3 (2015): 1350-1371.
Zhengxian Lin, Kim-Ho Lam, and Alan Fern. “Contrastive Explanations for
Reinforcement Learning via Embedded Self Predictions.”