Declaration of competing interest
There are no conflicts to declare.
Acknowledgments
This work was supported by grants from the National Natural Science
Foundation of China (grant numbers 32071370, 51861145307, and 31700859),
Natural Science Basic Research Plan in Shaanxi Province of China (grant
number 2017JQ3037), and the Doctoral Fund of Education Ministry of China
(grant number 2016M602832).
Reference
1. Qiu C., Cui C., Hautefort C., et al. (2020). Olfactory and Gustatory
Dysfunction as an Early Identifier of COVID-19 in Adults and Children:
An International Multicenter Study. Otolaryngol Head Neck Surg163 (4): 714-721. doi:10.1177/0194599820934376
2. Hovan A.J., Williams P.M., Stevenson-Moore P., et al. (2010). A
systematic review of dysgeusia induced by cancer therapies.Support Care Cancer 18 (8): 1081-1087.
doi:10.1007/s00520-010-0902-1
3. Okada N., Hanafusa T., Abe S., et al. (2016). Evaluation of the risk
factors associated with high-dose chemotherapy-induced dysgeusia in
patients undergoing autologous hematopoietic stem cell transplantation:
possible usefulness of cryotherapy in dysgeusia prevention.Support Care Cancer 24 (9): 3979-3985.
doi:10.1007/s00520-016-3244-9
4. Hummel T., Landis B.N., Hüttenbrink K.B. (2011). Smell and taste
disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg 10 Doc04.
doi:10.3205/cto000077
5. Doty R.L. (2019). Treatments for smell and taste disorders: A
critical review. Handb Clin Neurol 164 455-479.
doi:10.1016/b978-0-444-63855-7.00025-3
6. Barker K.E., Batstone M.D., Savage N.W. (2009). Comparison of
treatment modalities in burning mouth syndrome. Aust Dent J 54
(4): 300-305; quiz 396. doi:10.1111/j.1834-7819.2009.01154.x
7. Hampf G., Aalberg V., Sundén B. (1990). Experiences from a facial
pain unit. J Craniomandib Disord 4 (4): 267-272.
8. Yun J., Cho A.N., Cho S.W., et al. (2018). DNA-mediated self-assembly
of taste cells and neurons for taste signal transmission. Biomater
Sci 6 (12): 3388-3396. doi:10.1039/c8bm00873f
9. Lee J.S., Cho A.N., Jin Y., et al. (2018). Bio-artificial tongue with
tongue extracellular matrix and primary taste cells. Biomaterials151 24-37. doi:10.1016/j.biomaterials.2017.10.019
10. Deshpande D.A., Wang W.C., McIlmoyle E.L., et al. (2010). Bitter
taste receptors on airway smooth muscle bronchodilate by localized
calcium signaling and reverse obstruction. Nat Med 16 (11):
1299-1304. doi:10.1038/nm.2237
11. Mainland J.D., Barlow L.A., Munger S.D., et al. (2020). Identifying
Treatments for Taste and Smell Disorders: Gaps and Opportunities.Chem Senses 45 (7): 493-502. doi:10.1093/chemse/bjaa038
12. Guo Q., Chen S., Rao X., et al. (2019). Inhibition of SIRT1 promotes
taste bud stem cell survival and mitigates radiation-induced oral
mucositis in mice. Am J Transl Res 11 (8): 4789-4799.
13. Drost J., Clevers H. (2018). Organoids in cancer research. Nat
Rev Cancer 18 (7): 407-418. doi:10.1038/s41568-018-0007-6
14. Barker N., van Es J.H., Kuipers J., et al. (2007). Identification of
stem cells in small intestine and colon by marker gene Lgr5.Nature 449 (7165): 1003-1007. doi:10.1038/nature06196
15. Dekkers J.F., Wiegerinck C.L., de Jonge H.R., et al. (2013). A
functional CFTR assay using primary cystic fibrosis intestinal
organoids. Nat Med 19 (7): 939-945. doi:10.1038/nm.3201
16. Boj S.F., Hwang C.I., Baker L.A., et al. (2015). Organoid models of
human and mouse ductal pancreatic cancer. Cell 160 (1-2):
324-338. doi:10.1016/j.cell.2014.12.021
17. Broutier L., Mastrogiovanni G., Verstegen M.M., et al. (2017). Human
primary liver cancer-derived organoid cultures for disease modeling and
drug screening. Nat Med 23 (12): 1424-1435. doi:10.1038/nm.4438
18. Sachs N., de Ligt J., Kopper O., et al. (2018). A Living Biobank of
Breast Cancer Organoids Captures Disease Heterogeneity. Cell 172
(1-2): 373-386.e310. doi:10.1016/j.cell.2017.11.010
19. van de Wetering M., Francies H.E., Francis J.M., et al. (2015).
Prospective derivation of a living organoid biobank of colorectal cancer
patients. Cell 161 (4): 933-945. doi:10.1016/j.cell.2015.03.053
20. Li X., Nadauld L., Ootani A., et al. (2014). Oncogenic
transformation of diverse gastrointestinal tissues in primary organoid
culture. Nat Med 20 (7): 769-777. doi:10.1038/nm.3585
21. Drost J., van Jaarsveld R.H., Ponsioen B., et al. (2015). Sequential
cancer mutations in cultured human intestinal stem cells. Nature521 (7550): 43-47. doi:10.1038/nature14415
22. Matano M., Date S., Shimokawa M., et al. (2015). Modeling colorectal
cancer using CRISPR-Cas9-mediated engineering of human intestinal
organoids. Nat Med 21 (3): 256-262. doi:10.1038/nm.3802
23. Drost J., van Boxtel R., Blokzijl F., et al. (2017). Use of
CRISPR-modified human stem cell organoids to study the origin of
mutational signatures in cancer. Science 358 (6360): 234-238.
doi:10.1126/science.aao3130
24. Smith K.R., Treesukosol Y., Paedae A.B., et al. (2012). Contribution
of the TRPV1 channel to salt taste quality in mice as assessed by
conditioned taste aversion generalization and chorda tympani nerve
responses. Am J Physiol Regul Integr Comp Physiol 303 (11):
R1195-1205. doi:10.1152/ajpregu.00154.2012
25. Matsumoto K., Ohishi A., Iwatsuki K., et al. (2019). Transient
receptor potential vanilloid 4 mediates sour taste sensing via type III
taste cell differentiation. Sci Rep 9 (1): 6686.
doi:10.1038/s41598-019-43254-y
26. Dutta Banik D., Martin L.E., Freichel M., et al. (2018). TRPM4 and
TRPM5 are both required for normal signaling in taste receptor cells.Proc Natl Acad Sci U S A 115 (4): E772-e781.
doi:10.1073/pnas.1718802115
27. Zhang Y., Hoon M.A., Chandrashekar J., et al. (2003). Coding of
sweet, bitter, and umami tastes: different receptor cells sharing
similar signaling pathways. Cell 112 (3): 293-301.
doi:10.1016/s0092-8674(03)00071-0
28. Lyall V., Heck G.L., Vinnikova A.K., et al. (2004). The mammalian
amiloride-insensitive non-specific salt taste receptor is a vanilloid
receptor-1 variant. J Physiol 558 (Pt 1): 147-159.
doi:10.1113/jphysiol.2004.065656
29. Behrens M., Meyerhof W. (2009). Mammalian bitter taste perception.Results Probl Cell Differ 47 203-220. doi:10.1007/400_2008_5
30. Nelson G., Hoon M.A., Chandrashekar J., et al. (2001). Mammalian
sweet taste receptors. Cell 106 (3): 381-390.
doi:10.1016/s0092-8674(01)00451-2
31. Dias A.G., Rousseau D., Duizer L., et al. (2013). Genetic variation
in putative salt taste receptors and salt taste perception in humans.Chem Senses 38 (2): 137-145. doi:10.1093/chemse/bjs090
32. Talavera K., Yasumatsu K., Voets T., et al. (2005). Heat activation
of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438
(7070): 1022-1025. doi:10.1038/nature04248
33. Sjöstrand A.E., Sjödin P., Hegay T., et al. (2021). Taste perception
and lifestyle: insights from phenotype and genome data among Africans
and Asians. Eur J Hum Genet 29 (2): 325-337.
doi:10.1038/s41431-020-00736-2
34. Barlow L.A. (2015). Progress and renewal in gustation: new insights
into taste bud development. Development 142 (21): 3620-3629.
doi:10.1242/dev.120394
35. Barlow L.A., Klein O.D. (2015). Developing and regenerating a sense
of taste. Curr Top Dev Biol 111 401-419.
doi:10.1016/bs.ctdb.2014.11.012
36. Perea-Martinez I., Nagai T., Chaudhari N. (2013). Functional cell
types in taste buds have distinct longevities. PLoS One 8 (1):
e53399. doi:10.1371/journal.pone.0053399
37. Beidler L.M., Smallman R.L. (1965). Renewal of cells within taste
buds. J Cell Biol 27 (2): 263-272. doi:10.1083/jcb.27.2.263
38. Roper S.D., Chaudhari N. (2017). Taste buds: cells, signals and
synapses. Nat Rev Neurosci 18 (8): 485-497.
doi:10.1038/nrn.2017.68
39. Kinnamon S.C. (2012). Taste receptor signalling - from tongues to
lungs. Acta Physiol (Oxf) 204 (2): 158-168.
doi:10.1111/j.1748-1716.2011.02308.x
40. Bachmanov A.A., Beauchamp G.K. (2007). Taste receptor genes.Annu Rev Nutr 27 389-414.
doi:10.1146/annurev.nutr.26.061505.111329
41. Hoon M.A., Adler E., Lindemeier J., et al. (1999). Putative
mammalian taste receptors: a class of taste-specific GPCRs with distinct
topographic selectivity. Cell 96 (4): 541-551.
doi:10.1016/s0092-8674(00)80658-3
42. Li X., Li W., Wang H., et al. (2005). Pseudogenization of a
sweet-receptor gene accounts for cats’ indifference toward sugar.PLoS Genet 1 (1): 27-35. doi:10.1371/journal.pgen.0010003
43. Damak S., Rong M., Yasumatsu K., et al. (2003). Detection of sweet
and umami taste in the absence of taste receptor T1r3. Science301 (5634): 850-853. doi:10.1126/science.1087155
44. Max M., Shanker Y.G., Huang L., et al. (2001). Tas1r3, encoding a
new candidate taste receptor, is allelic to the sweet responsiveness
locus Sac. Nat Genet 28 (1): 58-63. doi:10.1038/ng0501-58
45. Montmayeur J.P., Liberles S.D., Matsunami H., et al. (2001). A
candidate taste receptor gene near a sweet taste locus. Nat
Neurosci 4 (5): 492-498. doi:10.1038/87440
46. Reed D.R., Li S., Li X., et al. (2004). Polymorphisms in the taste
receptor gene (Tas1r3) region are associated with saccharin preference
in 30 mouse strains. J Neurosci 24 (4): 938-946.
doi:10.1523/jneurosci.1374-03.2004
47. Bufe B., Hofmann T., Krautwurst D., et al. (2002). The human TAS2R16
receptor mediates bitter taste in response to beta-glucopyranosides.Nat Genet 32 (3): 397-401. doi:10.1038/ng1014
48. Adler E., Hoon M.A., Mueller K.L., et al. (2000). A novel family of
mammalian taste receptors. Cell 100 (6): 693-702.
doi:10.1016/s0092-8674(00)80705-9
49. Desimone J.A., Ren Z., Phan T.H., et al. (2012). Changes in taste
receptor cell [Ca2+]i modulate chorda tympani responses to salty and
sour taste stimuli. J Neurophysiol 108 (12): 3206-3220.
doi:10.1152/jn.00916.2011
50. Teng B., Wilson C.E., Tu Y.H., et al. (2019). Cellular and Neural
Responses to Sour Stimuli Require the Proton Channel Otop1. Curr
Biol 29 (21): 3647-3656.e3645. doi:10.1016/j.cub.2019.08.077
51. Ugawa S., Yamamoto T., Ueda T., et al. (2003). Amiloride-insensitive
currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric
sour-taste receptor channel. J Neurosci 23 (9): 3616-3622.
doi:10.1523/jneurosci.23-09-03616.2003
52. Stevens D.R., Seifert R., Bufe B., et al. (2001).
Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to
sour stimuli. Nature 413 (6856): 631-635. doi:10.1038/35098087
53. Richter T.A., Dvoryanchikov G.A., Chaudhari N., et al. (2004).
Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste
buds. J Neurophysiol 92 (3): 1928-1936. doi:10.1152/jn.00273.2004
54. Wu S.V., Rozengurt N., Yang M., et al. (2002). Expression of bitter
taste receptors of the T2R family in the gastrointestinal tract and
enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A 99 (4):
2392-2397. doi:10.1073/pnas.042617699
55. Singh N., Vrontakis M., Parkinson F., et al. (2011). Functional
bitter taste receptors are expressed in brain cells. Biochem
Biophys Res Commun 406 (1): 146-151. doi:10.1016/j.bbrc.2011.02.016
56. Jaggupilli A., Singh N., Upadhyaya J., et al. (2017). Analysis of
the expression of human bitter taste receptors in extraoral tissues.Mol Cell Biochem 426 (1-2): 137-147.
doi:10.1007/s11010-016-2902-z
57. Luo X.C., Chen Z.H., Xue J.B., et al. (2019). Infection by the
parasitic helminth Trichinella spiralis activates a Tas2r-mediated
signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S
A 116 (12): 5564-5569. doi:10.1073/pnas.1812901116
58. Workman A.D., Maina I.W., Brooks S.G., et al. (2018). The Role of
Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and
Chronic Rhinosinusitis. Front Immunol 9 624.
doi:10.3389/fimmu.2018.00624
59. Stern L., Giese N., Hackert T., et al. (2018). Overcoming
chemoresistance in pancreatic cancer cells: role of the bitter taste
receptor T2R10. J Cancer 9 (4): 711-725. doi:10.7150/jca.21803
60. Di Pizio A., Waterloo L.A.W., Brox R., et al. (2020). Rational
design of agonists for bitter taste receptor TAS2R14: from modeling to
bench and back. Cell Mol Life Sci 77 (3): 531-542.
doi:10.1007/s00018-019-03194-2
61. Dagan-Wiener A., Di Pizio A., Nissim I., et al. (2019). BitterDB:
taste ligands and receptors database in 2019. Nucleic Acids Res47 (D1): D1179-d1185. doi:10.1093/nar/gky974
62. Bahia M.S., Nissim I., Niv M.Y. (2018). Bitterness prediction
in-silico: A step towards better drugs. Int J Pharm 536 (2):
526-529. doi:10.1016/j.ijpharm.2017.03.076
63. Schutgens F., Clevers H. (2020). Human Organoids: Tools for
Understanding Biology and Treating Diseases. Annu Rev Pathol 15
211-234. doi:10.1146/annurev-pathmechdis-012419-032611
64. Seol H.S., Kang H.J., Lee S.I., et al. (2014). Development and
characterization of a colon PDX model that reproduces drug
responsiveness and the mutation profiles of its original tumor.Cancer Lett 345 (1): 56-64. doi:10.1016/j.canlet.2013.11.010
65. Zhu Y., Tian T., Li Z., et al. (2015). Establishment and
characterization of patient-derived tumor xenograft using gastroscopic
biopsies in gastric cancer. Sci Rep 5 8542. doi:10.1038/srep08542
66. Rossi G., Manfrin A., Lutolf M.P. (2018). Progress and potential in
organoid research. Nat Rev Genet 19 (11): 671-687.
doi:10.1038/s41576-018-0051-9
67. Ren W., Lewandowski B.C., Watson J., et al. (2014). Single Lgr5- or
Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex
vivo. Proc Natl Acad Sci U S A 111 (46): 16401-16406.
doi:10.1073/pnas.1409064111
68. Aihara E., Mahe M.M., Schumacher M.A., et al. (2015).
Characterization of stem/progenitor cell cycle using murine
circumvallate papilla taste bud organoid. Sci Rep 5 17185.
doi:10.1038/srep17185
69. Feng S., Achoute L., Margolskee R.F., et al. (2020).
Lipopolysaccharide-Induced Inflammatory Cytokine Expression in Taste
Organoids. Chem Senses 45 (3): 187-194.
doi:10.1093/chemse/bjaa002
70. Ren W., Liu Q., Zhang X., et al. (2020). Age-related taste cell
generation in circumvallate papillae organoids via regulation of
multiple signaling pathways. Exp Cell Res 394 (2): 112150.
doi:10.1016/j.yexcr.2020.112150
71. Ren W., Aihara E., Lei W., et al. (2017). Transcriptome analyses of
taste organoids reveal multiple pathways involved in taste cell
generation. Sci Rep 7 (1): 4004. doi:10.1038/s41598-017-04099-5
72. Takai S., Watanabe Y., Sanematsu K., et al. (2019). Effects of
insulin signaling on mouse taste cell proliferation. PLoS One 14
(11): e0225190. doi:10.1371/journal.pone.0225190
73. Finger T.E., Danilova V., Barrows J., et al. (2005). ATP signaling
is crucial for communication from taste buds to gustatory nerves.Science 310 (5753): 1495-1499. doi:10.1126/science.1118435
74. Nguyen H.M., Reyland M.E., Barlow L.A. (2012). Mechanisms of taste
bud cell loss after head and neck irradiation. J Neurosci 32
(10): 3474-3484. doi:10.1523/jneurosci.4167-11.2012
75. Kawashita Y., Soutome S., Umeda M., et al. (2020). Oral management
strategies for radiotherapy of head and neck cancer. Jpn Dent Sci
Rev 56 (1): 62-67. doi:10.1016/j.jdsr.2020.02.001
76. Pellegrini L., Bonfio C., Chadwick J., et al. (2020). Human CNS
barrier-forming organoids with cerebrospinal fluid production.Science 369 (6500). doi:10.1126/science.aaz5626
77. Di Donato N., Timms A.E., Aldinger K.A., et al. (2018). Analysis of
17 genes detects mutations in 81% of 811 patients with lissencephaly.Genet Med 20 (11): 1354-1364. doi:10.1038/gim.2018.8
78. Williams M., Prem S., Zhou X., et al. (2018). Rapid Detection of
Neurodevelopmental Phenotypes in Human Neural Precursor Cells (NPCs).J Vis Exp (133). doi:10.3791/56628
79. Garcez P.P., Loiola E.C., Madeiro da Costa R., et al. (2016). Zika
virus impairs growth in human neurospheres and brain organoids.Science 352 (6287): 816-818. doi:10.1126/science.aaf6116
80. Choi S.H., Kim Y.H., Hebisch M., et al. (2014). A three-dimensional
human neural cell culture model of Alzheimer’s disease. Nature515 (7526): 274-278. doi:10.1038/nature13800
81. Peng W.C., Logan C.Y., Fish M., et al. (2018). Inflammatory Cytokine
TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D
Culture. Cell 175 (6): 1607-1619.e1615.
doi:10.1016/j.cell.2018.11.012
82. Youk J., Kim T., Evans K.V., et al. (2020). Three-Dimensional Human
Alveolar Stem Cell Culture Models Reveal Infection Response to
SARS-CoV-2. Cell Stem Cell 27 (6): 905-919.e910.
doi:10.1016/j.stem.2020.10.004
83. Kalmykov A., Huang C., Bliley J., et al. (2019). Organ-on-e-chip:
Three-dimensional self-rolled biosensor array for electrical
interrogations of human electrogenic spheroids. Sci Adv 5 (8):
eaax0729. doi:10.1126/sciadv.aax0729
84. Misun P.M., Birchler A.K., Lang M., et al. (2018). Fabrication and
Operation of Microfluidic Hanging-Drop Networks. Methods Mol Biol1771 183-202. doi:10.1007/978-1-4939-7792-5_15
85. Mancera-Andrade E.I., Parsaeimehr A., Arevalo-Gallegos A., et al.
(2018). Microfluidics technology for drug delivery: A review.Front Biosci (Elite Ed) 10 74-91. doi:10.2741/e809
86. Banerjee M., Bhonde R.R. (2006). Application of hanging drop
technique for stem cell differentiation and cytotoxicity studies.Cytotechnology 51 (1): 1-5. doi:10.1007/s10616-006-9001-z
87. Gutiérrez L., Lindeboom F., Ferreira R., et al. (2005). A hanging
drop culture method to study terminal erythroid differentiation.Exp Hematol 33 (10): 1083-1091. doi:10.1016/j.exphem.2005.06.014
88. Seiler A.E., Spielmann H. (2011). The validated embryonic stem cell
test to predict embryotoxicity in vitro. Nat Protoc 6 (7):
961-978. doi:10.1038/nprot.2011.348
89. Kelm J.M., Timmins N.E., Brown C.J., et al. (2003). Method for
generation of homogeneous multicellular tumor spheroids applicable to a
wide variety of cell types. Biotechnol Bioeng 83 (2): 173-180.
doi:10.1002/bit.10655
90. Hsiao A.Y., Tung Y.C., Qu X., et al. (2012). 384 hanging drop arrays
give excellent Z-factors and allow versatile formation of co-culture
spheroids. Biotechnol Bioeng 109 (5): 1293-1304.
doi:10.1002/bit.24399
91. Rismani Yazdi S., Shadmani A., Bürgel S.C., et al. (2015). Adding
the ’heart’ to hanging drop networks for microphysiological multi-tissue
experiments. Lab Chip 15 (21): 4138-4147. doi:10.1039/c5lc01000d
92. Birchler A., Berger M., Jäggin V., et al. (2016). Seamless
Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop
Networks for Individual Handling and Culturing of Stem Cells and
Microtissue Spheroids. Anal Chem 88 (2): 1222-1229.
doi:10.1021/acs.analchem.5b03513
93. Bartosh T.J., Ylöstalo J.H., Mohammadipoor A., et al. (2010).
Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids
enhances their antiinflammatory properties. Proc Natl Acad Sci U S
A 107 (31): 13724-13729. doi:10.1073/pnas.1008117107
94. Misun P.M., Rothe J., Schmid Y.R.F., et al. (2016). Multi-analyte
biosensor interface for real-time monitoring of 3D microtissue spheroids
in hanging-drop networks. Microsyst Nanoeng 2 16022.
doi:10.1038/micronano.2016.22
95. Schmid Y.R.F., Bürgel S.C., Misun P.M., et al. (2016). Electrical
Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop
Networks. ACS Sensors 1 (8): 1028-1035.
doi:10.1021/acssensors.6b00272
96. Horowitz L.F., Rodriguez A.D., Au-Yeung A., et al. (2021).
Microdissected ”cuboids” for microfluidic drug testing of intact
tissues. Lab Chip 21 (1): 122-142. doi:10.1039/d0lc00801j
97. Qin Y., Sukumaran S.K., Jyotaki M., et al. (2018). Gli3 is a
negative regulator of Tas1r3-expressing taste cells. PLoS Genet14 (2): e1007058. doi:10.1371/journal.pgen.1007058
98. Akhtar A., Sah S.P. (2020). Insulin signaling pathway and related
molecules: Role in neurodegeneration and Alzheimer’s disease.Neurochem Int 135 104707. doi:10.1016/j.neuint.2020.104707
99. Huh D., Hamilton G.A., Ingber D.E. (2011). From 3D cell culture to
organs-on-chips. Trends Cell Biol 21 (12): 745-754.
doi:10.1016/j.tcb.2011.09.005
100. Sung J.H., Kam C., Shuler M.L. (2010). A microfluidic device for a
pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip10 (4): 446-455. doi:10.1039/b917763a
101. Ingham P.W., McMahon A.P. (2001). Hedgehog signaling in animal
development: paradigms and principles. Genes Dev 15 (23):
3059-3087. doi:10.1101/gad.938601
102. Veldhuis N.A., Poole D.P., Grace M., et al. (2015). The G
protein-coupled receptor-transient receptor potential channel axis:
molecular insights for targeting disorders of sensation and
inflammation. Pharmacol Rev 67 (1): 36-73.
doi:10.1124/pr.114.009555
103. Nilius B., Szallasi A. (2014). Transient receptor potential
channels as drug targets: from the science of basic research to the art
of medicine. Pharmacol Rev 66 (3): 676-814.
doi:10.1124/pr.113.008268
104. Clapham D.E. (2003). TRP channels as cellular sensors.Nature 426 (6966): 517-524. doi:10.1038/nature02196
105. Wu H., Cui Y., He C., et al. (2020). Activation of the bitter taste
sensor TRPM5 prevents high salt-induced cardiovascular dysfunction.Sci China Life Sci 63 (11): 1665-1677.
doi:10.1007/s11427-019-1649-9
106. Pérez C.A., Huang L., Rong M., et al. (2002). A transient receptor
potential channel expressed in taste receptor cells. Nat Neurosci5 (11): 1169-1176. doi:10.1038/nn952
107. Hofmann T., Chubanov V., Gudermann T., et al. (2003). TRPM5 is a
voltage-modulated and Ca(2+)-activated monovalent selective cation
channel. Curr Biol 13 (13): 1153-1158.
doi:10.1016/s0960-9822(03)00431-7
108. Liu P., Shah B.P., Croasdell S., et al. (2011). Transient receptor
potential channel type M5 is essential for fat taste. J Neurosci31 (23): 8634-8642. doi:10.1523/jneurosci.6273-10.2011
109. LopezJimenez N.D., Cavenagh M.M., Sainz E., et al. (2006). Two
members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are
co-expressed in a subset of taste receptor cells. J Neurochem 98
(1): 68-77. doi:10.1111/j.1471-4159.2006.03842.x
110. Ishimaru Y., Katano Y., Yamamoto K., et al. (2010). Interaction
between PKD1L3 and PKD2L1 through their transmembrane domains is
required for localization of PKD2L1 at taste pores in taste cells of
circumvallate and foliate papillae. Faseb j 24 (10): 4058-4067.
doi:10.1096/fj.10-162925
111. Lyall V., Phan T.H., Ren Z., et al. (2010). Regulation of the
putative TRPV1t salt taste receptor by phosphatidylinositol
4,5-bisphosphate. J Neurophysiol 103 (3): 1337-1349.
doi:10.1152/jn.00883.2009
112. Liu H.X., Henson B.S., Zhou Y., et al. (2008). Fungiform papilla
pattern: EGF regulates inter-papilla lingual epithelium and decreases
papilla number by means of PI3K/Akt, MEK/ERK, and p38 MAPK signaling.Dev Dyn 237 (9): 2378-2393. doi:10.1002/dvdy.21657
113. Liu F., Thirumangalathu S., Gallant N.M., et al. (2007).
Wnt-beta-catenin signaling initiates taste papilla development.Nat Genet 39 (1): 106-112. doi:10.1038/ng1932
114. Bitgood M.J., McMahon A.P. (1995). Hedgehog and Bmp genes are
coexpressed at many diverse sites of cell-cell interaction in the mouse
embryo. Dev Biol 172 (1): 126-138. doi:10.1006/dbio.1995.0010
115. Petersen C.I., Jheon A.H., Mostowfi P., et al. (2011). FGF
signaling regulates the number of posterior taste papillae by
controlling progenitor field size. PLoS Genet 7 (6): e1002098.
doi:10.1371/journal.pgen.1002098
116. Seta Y., Seta C., Barlow L.A. (2003). Notch-associated gene
expression in embryonic and adult taste papillae and taste buds suggests
a role in taste cell lineage decisions. J Comp Neurol 464 (1):
49-61. doi:10.1002/cne.10787
117. Hall J.M., Hooper J.E., Finger T.E. (1999). Expression of sonic
hedgehog, patched, and Gli1 in developing taste papillae of the mouse.J Comp Neurol 406 (2): 143-155.
doi:10.1002/(sici)1096-9861(19990405)406:2<143::aid-cne1>3.0.co;2-x
118. Hall J.M., Bell M.L., Finger T.E. (2003). Disruption of sonic
hedgehog signaling alters growth and patterning of lingual taste
papillae. Dev Biol 255 (2): 263-277.
doi:10.1016/s0012-1606(02)00048-9
119. Iwatsuki K., Liu H.X., Grónder A., et al. (2007). Wnt signaling
interacts with Shh to regulate taste papilla development. Proc
Natl Acad Sci U S A 104 (7): 2253-2258. doi:10.1073/pnas.0607399104
120. Jung H.S., Oropeza V., Thesleff I. (1999). Shh, Bmp-2, Bmp-4 and
Fgf-8 are associated with initiation and patterning of mouse tongue
papillae. Mech Dev 81 (1-2): 179-182.
doi:10.1016/s0925-4773(98)00234-2
121. Seta Y., Toyono T., Kataoka S., et al. (2005). Regulation of taste
bud cell differentiation by notch signaling pathway. Chem Senses30 Suppl 1 i48-49. doi:10.1093/chemse/bjh107