Reference
Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., . . . Raoult, D. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis, 145 . doi: 10.1016/j.micpath.2020.104228
Butler, M. J., Bruheim, P., Jovetic, S., Marinelli, F., Postma, P. W., & Bibb, M. J. (2002). Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol, 68 (10), 4731-4739. doi: 10.1128/aem.68.10.4731-4739.2002
Carata, E., Peano, C., Tredici, S. M., Ferrari, F., Tala, A., Corti, G., . . . Alifano, P. (2009). Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production.Microb Cell Fact, 8 , 18. doi: 10.1186/1475-2859-8-18
Chen, C., Hong, M., Chu, J., Huang, M., Ouyang, L., Tian, X., & Zhuang, Y. (2017). Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Bioprocess Biosyst Eng, 40 (2), 201-209. doi: 10.1007/s00449-016-1687-5
Chen, Y., Huang, M., Wang, Z., Chu, J., Zhuang, Y., & Zhang, S. (2013). Controlling the feed rate of glucose and propanol for the enhancement of erythromycin production and exploration of propanol metabolism fate by quantitative metabolic flux analysis. Bioprocess Biosyst Eng, 36 (10), 1445-1453. doi: 10.1007/s00449-013-0883-9
Chng, C., Lum, A. M., Vroom, J. A., & Kao, C. M. (2008). A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea.Proc Natl Acad Sci U S A, 105 (32), 11346-11351. doi: 10.1073/pnas.0803622105
Cortés, J., Velasco, J., Foster, G., Blackaby, A. P., Rudd, B. A., & Wilkinson, B. (2002). Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea. Mol Microbiol, 44 (5), 1213-1224. doi: doi.org/10.1046/j.1365-2958.2002.02975.x
Darzi, Y., Letunic, I., Bork, P., & Yamada, T. (2018). iPath3.0: interactive pathways explorer v3.Nucleic Acids Res, 46 (W1), W510-W513. doi: 10.1093/nar/gky299
Dhakal, D., Sohng, J. K., & Pandey, R. P. (2019). Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact, 18 (1), 137. doi: 10.1186/s12934-019-1184-z
El-Enshasy, H. A., Mohamed, N. A., Farid, M. A., & El-Diwany, A. I. (2008). Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour Technol, 99 (10), 4263-4268. doi: 10.1016/j.biortech.2007.08.050
Ferro, A. M., Ramos, P., Guerreiro, O., Jeronimo, E., Pires, I., Capel, C., . . . Goncalves, S. (2017). Impact of novel SNPs identified in Cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway and their association with biological activities. BMC Genomics, 18 (1), 183. doi: 10.1186/s12864-017-3534-8
Fischer, M., Falke, D., Naujoks, C., & Sawers, R. G. (2018). Cytochrome bd oxidase has an important role in sustaining growth and development of Streptomyces coelicolor A3 (2) under oxygen-limiting conditions. J Bacteriol, 200 (16), e00239-00218.
Fujimoto, M., Chijiwa, M., Nishiyama, T., Takano, H., & Ueda, K. (2016). Developmental defect of cytochrome oxidase mutants of Streptomyces coelicolor A3(2). Microbiology, 162 (8), 1446-1455. doi: 10.1099/mic.0.000332
Hong, M., Huang, M., Chu, J., Zhuang, Y., & Zhang, S. (2016). Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via (13)C labeling experiments. J Biotechnol, 231 , 1-8. doi: 10.1016/j.jbiotec.2016.05.026
Hopwood, D. A. (1985). Genetic manipulation of Streptomyces: a laboratory manual.
Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., . . . Kuhn, M. (2016). eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.Nucleic Acids Res, 44 (D1), D286-D293. doi: doi.org/10.1093/nar/gkv1248
Karnicar, K., Drobnak, I., Petek, M., Magdevska, V., Horvat, J., Vidmar, R., . . . Petkovic, H. (2016). Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea. Microb Cell Fact, 15 , 93. doi: 10.1186/s12934-016-0496-5
Kiss, J., Szabo, M., & Olasz, F. (2003). Site-specific recombination by the DDE family member mobile element IS30 transposase. Proc Natl Acad Sci U S A, 100 (25), 15000-15005. doi: 10.1073/pnas.2436518100
Li, X., Chen, J., Andersen, J. M., Chu, J., & Jensen, P. R. (2020). Cofactor engineering redirects secondary metabolism and enhances erythromycin production in Saccharopolyspora erythraea. ACS Synth Biol, 9 (3), 655-670. doi: 10.1021/acssynbio.9b00528
Li, X., Chu, J., & Jensen, P. R. (2020). The expression of NOX from synthetic promoters reveals an important role of the redox status in regulating secondary metabolism of Saccharopolyspora erythraea. Front Bioeng Biotechnol, 8 , 818. doi: 10.3389/fbioe.2020.00818
Li, Y., Chang, X., Yu, W., Li, H., Ye, Z., Yu, H., . . . Ye, B. (2013). Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. BMC Genomics, 14 (1), 523. doi: doi.org/10.1186/1471-2164-14-523
Liao, C., Yao, L., Xu, Y., Liu, W., Zhou, Y., & Ye, B. (2015). Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes. Proc. Natl. Acad. Sci. U. S. A., 112 (51), 15630-15635. doi: doi:10.1073/pnas.1508465112
Licona-Cassani, C., Marcellin, E., Quek, L. E., Jacob, S., & Nielsen, L. K. (2012). Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Antonie van Leeuwenhoek, 102 (3), 493-502. doi: 10.1007/s10482-012-9783-2
Liu, J., Chen, Y., Wang, W., Ren, M., Wu, P., Wang, Y., . . . Zhang, B. (2017). Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea. Metab Eng, 39 , 29-37. doi: 10.1016/j.ymben.2016.10.012
Liu, Y., Ren, C. Y., Wei, W. P., You, D., Yin, B. C., & Ye, B. C. (2019). A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters. ACS Synth Biol, 8 (5), 1134-1143. doi: 10.1021/acssynbio.9b00024
Lum, A. M., Huang, J., Hutchinson, C. R., & Kao, C. M. (2004). Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays.Metab Eng, 6 (3), 186-196. doi: 10.1016/j.ymben.2003.12.001
Manteca, A., & Yague, P. (2018). Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism. Antibiotics (Basel), 7 (2). doi: 10.3390/antibiotics7020041
Marcellin, E., Mercer, T. R., Licona-Cassani, C., Palfreyman, R. W., Dinger, M. E., Steen, J. A., . . . Nielsen, L. K. (2013). Saccharopolyspora erythraea’s genome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics, 14 (1), 15. doi: doi.org/10.1186/1471-2164-14-15
Mironov, V., Sergienko, O., Nastasyak, I., & Danilenko, V. (2004). Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolyspora erythraea.Appl. Biochem. Microbiol., 40 (6), 531-541. doi: doi.org/10.1023/B:ABIM.0000046985.66328.7a
Molle, V., Palframan, W. J., Findlay, K. C., & Buttner, M. J. (2000). WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3 (2). J Bacteriol, 182 (5), 1286-1295. doi: Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolyspora erythraeadoi: 10.1128/JB.182.5.1286-1295.2000
Nagy, Z., & Chandler, M. (2004). Regulation of transposition in bacteria. Res Microbiol, 155 (5), 387-398. doi: 10.1016/j.resmic.2004.01.008
Nakken, S., Alseth, I., & Rognes, T. (2007). Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes. Neuroscience, 145 (4), 1273-1279. doi: 10.1016/j.neuroscience.2006.09.004
Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014.J Nat Prod, 79 (3), 629-661. doi: 10.1021/acs.jnatprod.5b01055
Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., . . . Leadlay, P. F. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol, 25 (4), 447-453. doi: 10.1038/nbt1297
Peano, C., Bicciato, S., Corti, G., Ferrari, F., Rizzi, E., Bonnal, R. J., . . . De Bellis, G. (2007). Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microb Cell Fact, 6 , 37. doi: 10.1186/1475-2859-6-37
Peano, C., Damiano, F., Forcato, M., Pietrelli, A., Palumbo, C., Corti, G., . . . Alifano, P. (2014). Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metab Eng, 26 , 1-16. doi: 10.1016/j.ymben.2014.08.001
Peano, C., Tala, A., Corti, G., Pasanisi, D., Durante, M., Mita, G., . . . Alifano, P. (2012). Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact, 11 , 32. doi: 10.1186/1475-2859-11-32
Qiao, L., Li, X., Ke, X., & Chu, J. (2020). A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresources and Bioprocessing, 7 (1), 12. doi: 10.1186/s40643-020-0299-8
Radchenko, M. V., Thornton, J., & Merrick, M. (2013). P(II) signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate. Proc Natl Acad Sci U S A, 110 (32), 12948-12953. doi: 10.1073/pnas.1304386110
Redenbach, M., Scheel, J., & Schmidt, U. (2000). Chromosome topology and genome size of selected actinomycetes species. Antonie van Leeuwenhoek, 78 (3-4), 227-235. doi: doi.org/10.1023/A:1010289326752
Reeves, A. R., Brikun, I. A., Cernota, W. H., Leach, B. I., Gonzalez, M. C., & Weber, J. M. (2006). Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol, 33 (7), 600-609. doi: 10.1007/s10295-006-0094-3
Reeves, A. R., Brikun, I. A., Cernota, W. H., Leach, B. I., Gonzalez, M. C., & Weber, J. M. (2007). Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production.Metab Eng, 9 (3), 293-303. doi: 10.1016/j.ymben.2007.02.001
Sayed, A. M., Abdel-Wahab, N. M., Hassan, H. M., & Abdelmohsen, U. R. (2019). Saccharopolyspora: an underexplored source for bioactive natural products. J Appl Microbiol . doi: 10.1111/jam.14360
Scott, R. I., Salmon, I., & Poole, R. K. (1992). The cytochromes of the filamentous bacteria Streptomyces clavuligerus and Saccharopolyspora erythraea (FormerlyStreptomyces erythraeus). Curr Microbiol, 24 (2), 105-109. doi: doi.org/10.1007/BF01570906
Sivapragasam, S., & Grove, A. (2019). The Link between Purine Metabolism and Production of Antibiotics in Streptomyces. Antibiotics (Basel), 8 (2). doi: 10.3390/antibiotics8020076
Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon.Biotechnol Bioeng, 80 (7), 762-776. doi: 10.1002/bit.10434
Summers, R. G., Donadio, S., Staver, M. J., Wendt-Pienkowski, E., Hutchinson, C. R., & Katz, L. (1997). Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology, 143 (10), 3251-3262.
Tong, Y., Charusanti, P., Zhang, L., Weber, T., & Lee, S. Y. (2015). CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synth Biol, 4 (9), 1020-1029. doi: 10.1021/acssynbio.5b00038
Varemo, L., Nielsen, J., & Nookaew, I. (2013). Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res, 41 (8), 4378-4391. doi: 10.1093/nar/gkt111
Wang, W., Li, S., Li, Z., Zhang, J., Fan, K., Tan, G., . . . Zhang, L. (2020). Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces.Nat. Biotechnol., 38 (1), 76-83. doi: doi.org/10.1038/s41587-019-0335-4
Wang, Y., Wang, Y., Chu, J., Zhuang, Y., Zhang, L., & Zhang, S. (2007). Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase. Appl Microbiol Biotechnol, 75 (4), 837-842. doi: 10.1007/s00253-007-0894-z
Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., . . . Medema, M. H. (2015). antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res, 43 (W1), W237-243. doi: 10.1093/nar/gkv437
Weber, T., Charusanti, P., Musiol-Kroll, E. M., Jiang, X., Tong, Y., Kim, H. U., & Lee, S. Y. (2015). Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol, 33 (1), 15-26. doi: 10.1016/j.tibtech.2014.10.009
Xu, Y., You, D., Yao, L. L., Chu, X., & Ye, B. C. (2019). Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea. Microb Cell Fact, 18 (1), 206. doi: 10.1186/s12934-019-1258-y
Xu, Z., Liu, Y., & Ye, B. C. (2018). PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea. Appl Environ Microbiol, 84 (8). doi: 10.1128/AEM.00049-18
Xu, Z., You, D., Tang, L. Y., Zhou, Y., & Ye, B. C. (2019). Metabolic engineering strategies based on secondary messengers (p)ppGpp and C-di-GMP to increase erythromycin yield in Saccharopolyspora erythraea. ACS Synth Biol, 8 (2), 332-345. doi: 10.1021/acssynbio.8b00372
Yuzawa, S., Keasling, J. D., & Katz, L. (2017). Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges. J Antibiot (Tokyo), 70 (4), 378-385. doi: 10.1038/ja.2016.136
Zeng, W., Guo, L., Xu, S., Chen, J., & Zhou, J. (2020). High-Throughput Screening Technology in Industrial Biotechnology. Trends Biotechnol . doi: 10.1016/j.tibtech.2020.01.001
Zhang, Q., Chen, Y., Hong, M., Gao, Y., Chu, J., Zhuang, Y.-p., & Zhang, S.-l. (2014). The dynamic regulation of nitrogen and phosphorus in the early phase of fermentation improves the erythromycin production by recombinant Saccharopolyspora erythraea strain. Bioresources and Bioprocessing, 1 (1), 15. doi: doi.org/10.1186/s40643-014-0015-7
Zheng, F., Long, Q., & Xie, J. (2012). The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives.Cell Biochem Biophys, 63 (2), 103-108. doi: 10.1007/s12013-012-9348-z
Zhuang, Z., Huang, M., & Chu, J. (2018). In silico reconstruction and experimental validation of Saccharopolyspora erythraea genome-scale metabolic model iZZ1342 that accounts for 1685 ORFs. Bioresour Bioprocess, 5 (1), 26. doi: doi.org/10.1186/s40643-018-0212-x
Zhuo, Y., Zhang, W., Chen, D., Gao, H., Tao, J., Liu, M., . . . Zhang, Q. (2010). Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proceedings of the National Academy of Sciences, 107 (25), 11250-11254. doi: doi:10.1073/pnas.1006085107
Zou, X., Hang, H.-f., Chu, J., Zhuang, Y.-p., & Zhang, S.-l. (2009a). Enhancement of erythromycin A production with feeding available nitrogen sources in erythromycin biosynthesis phase. Bioresour Technol, 100 (13), 3358-3365. doi: doi.org/10.1016/j.biortech.2009.01.064
Zou, X., Hang, H.-f., Chu, J., Zhuang, Y.-p., & Zhang, S.-l. (2009b). Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Bioresour Technol, 100 (3), 1406-1412. doi: doi.org/10.1016/j.biortech.2008.09.017