References
Anderson, B. D., & Bisanz, J. E. (2023). Challenges and opportunities
of strain diversity in gut microbiome research. Frontiers in
Microbiology , 14 .
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117122
Barlow, J. T., Bogatyrev, S. R., & Ismagilov, R. F. (2020). A
quantitative sequencing framework for absolute abundance measurements of
mucosal and lumenal microbial communities. Nature Communications ,11 (1), Article 1. https://doi.org/10.1038/s41467-020-16224-6
Barreto, H. C., & Gordo, I. (2023). Intrahost evolution of the gut
microbiota. Nature Reviews Microbiology , 21 (9), Article 9.
https://doi.org/10.1038/s41579-023-00890-6
Barreto, H. C., Sousa, A., & Gordo, I. (2020). The Landscape of
Adaptive Evolution of a Gut Commensal Bacteria in Aging Mice.Current Biology , 30 (6), 1102-1109.e5.
https://doi.org/10.1016/j.cub.2020.01.037
Béchade, B., Cabuslay, C. S., Hu, Y., Mendonca, C. M., Hassanpour, B.,
Lin, J. Y., Su, Y., Fiers, V. J., Anandarajan, D., Lu, R., Olson, C. J.,
Duplais, C., Rosen, G. L., Moreau, C. S., Aristilde, L., Wertz, J. T.,
& Russell, J. A. (2023). Physiological and evolutionary contexts of a
new symbiotic species from the nitrogen-recycling gut community of
turtle ants. The ISME Journal , 17 (10), 1751–1764.
https://doi.org/10.1038/s41396-023-01490-1
Bergner, L. M., Orton, R. J., Benavides, J. A., Becker, D. J., Tello,
C., Biek, R., & Streicker, D. G. (2020). Demographic and environmental
drivers of metagenomic viral diversity in vampire bats. Molecular
Ecology , 29 (1), 26–39. https://doi.org/10.1111/mec.15250
Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J.,
& Cote, J. (2017). Climate warming reduces gut microbiota diversity in
a vertebrate ectotherm. Nature Ecology & Evolution , 1 (6),
161. https://doi.org/10.1038/s41559-017-0161
Björk, J. R., Hui, F. K. C., O’Hara, R. B., & Montoya, J. M. (2018).
Uncovering the drivers of host-associated microbiota with joint species
distribution modelling. Molecular Ecology , 27 (12),
2714–2724. https://doi.org/10.1111/mec.14718
Blanchet, F. G., Cazelles, K., & Gravel, D. (2020). Co-occurrence is
not evidence of ecological interactions. Ecology Letters ,23 (7), 1050–1063. https://doi.org/10.1111/ele.13525
Bohmann, K., Elbrecht, V., Carøe, C., Bista, I., Leese, F., Bunce, M.,
Yu, D. W., Seymour, M., Dumbrell, A. J., & Creer, S. (2022). Strategies
for sample labelling and library preparation in DNA metabarcoding
studies. Molecular Ecology Resources , 22 (4), 1231–1246.
https://doi.org/10.1111/1755-0998.13512
Boshuizen, H. C., & te Beest, D. E. (2023). Pitfalls in the statistical
analysis of microbiome amplicon sequencing data. Molecular Ecology
Resources , 23 (3), 539–548.
https://doi.org/10.1111/1755-0998.13730
Bozzi, D., Rasmussen, J. A., Carøe, C., Sveier, H., Nordøy, K., Gilbert,
M. T. P., & Limborg, M. T. (2021). Salmon gut microbiota correlates
with disease infection status: Potential for monitoring health in farmed
animals. Animal Microbiome , 3 (1), 30.
https://doi.org/10.1186/s42523-021-00096-2
Brown, B. R. P., Goheen, J. R., Newsome, S. D., Pringle, R. M., Palmer,
T. M., Khasoha, L. M., & Kartzinel, T. R. (2023). Host phylogeny and
functional traits differentiate gut microbiomes in a diverse natural
community of small mammals. Molecular Ecology , 32 (9),
2320–2334. https://doi.org/10.1111/mec.16874
Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati,
A. S., McGill, S. K., & Dougherty, M. K. (2019). High-throughput
amplicon sequencing of the full-length 16S rRNA gene with
single-nucleotide resolution. Nucleic Acids Research ,47 (18), e103. https://doi.org/10.1093/nar/gkz569
Carlsen, T., Aas, A. B., Lindner, D., Vrålstad, T., Schumacher, T., &
Kauserud, H. (2012). Don’t make a mista(g)ke: Is tag switching an
overlooked source of error in amplicon pyrosequencing studies?Fungal Ecology , 5 (6), 747–749.
https://doi.org/10.1016/j.funeco.2012.06.003
Carøe, C., & Bohmann, K. (2020). Tagsteady: A metabarcoding library
preparation protocol to avoid false assignment of sequences to samples.Molecular Ecology Resources , 20 (6), 1620–1631.
https://doi.org/10.1111/1755-0998.13227
Chen, J., & Zhang, X. (2021). D-MANOVA: Fast distance-based
multivariate analysis of variance for large-scale microbiome association
studies. Bioinformatics , 38 (1), 286–288.
https://doi.org/10.1093/bioinformatics/btab498
Clark, N. J., Wells, K., & Lindberg, O. (2018). Unravelling changing
interspecific interactions across environmental gradients using Markov
random fields. Ecology , 99 (6), 1277–1283.
https://doi.org/10.1002/ecy.2221
Couch, C. E., Stagaman, K., Spaan, R. S., Combrink, H. J., Sharpton, T.
J., Beechler, B. R., & Jolles, A. E. (2021). Diet and gut microbiome
enterotype are associated at the population level in African buffalo.Nature Communications , 12 (1), Article 1.
https://doi.org/10.1038/s41467-021-22510-8
Coyte, K. Z., Rao, C., Rakoff-Nahoum, S., & Foster, K. R. (2021).
Ecological rules for the assembly of microbiome communities. PLOS
Biology , 19 (2), e3001116.
https://doi.org/10.1371/journal.pbio.3001116
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan,
B. J. (2018). Simple statistical identification and removal of
contaminant sequences in marker-gene and metagenomics data.Microbiome , 6 (1), 226.
https://doi.org/10.1186/s40168-018-0605-2
de Goffau, M. C., Lager, S., Salter, S. J., Wagner, J., Kronbichler, A.,
Charnock-Jones, D. S., Peacock, S. J., Smith, G. C. S., & Parkhill, J.
(2018). Recognizing the reagent microbiome. Nature Microbiology ,3 (8), Article 8. https://doi.org/10.1038/s41564-018-0202-y
Edgar, R. C. (2018). UNCROSS2: Identification of cross-talk in 16S
rRNA OTU tables (p. 400762). bioRxiv. https://doi.org/10.1101/400762
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., &
Weyrich, L. S. (2019). Contamination in Low Microbial Biomass Microbiome
Studies: Issues and Recommendations. Trends in Microbiology ,27 (2), 105–117. https://doi.org/10.1016/j.tim.2018.11.003
Esling, P., Lejzerowicz, F., & Pawlowski, J. (2015). Accurate
multiplexing and filtering for high-throughput amplicon-sequencing.Nucleic Acids Research , 43 (5), 2513–2524.
https://doi.org/10.1093/nar/gkv107
Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De
Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Rayé, G.,
& Taberlet, P. (2015). Replication levels, false presences and the
estimation of the presence/absence from eDNA metabarcoding data.Molecular Ecology Resources , 15 (3), 543–556.
https://doi.org/10.1111/1755-0998.12338
Fountain-Jones, N., Kozakiewicz, C., Forester, B., Landguth, E., Carver,
S., Charleston, M., Gagne, R., Greenwell, B., Kraberger, S., Trumbo, D.,
Mayer, M., Clark, N., & Machado, G. (2021). MrIML: Multi-response
interpretable machine learning to map genomic landscapes.Molecular Ecology Resources , 21 , 2766–2781.
https://doi.org/10.22541/au.160855820.09604024/v1
Fountain-Jones, N. M., Clark, N. J., Kinsley, A. C., Carstensen, M.,
Forester, J., Johnson, T. J., Miller, E. A., Moore, S., Wolf, T. M., &
Craft, M. E. (2020). Microbial associations and spatial proximity
predict North American moose (Alces alces) gastrointestinal community
composition. Journal of Animal Ecology , 89 (3).
https://doi.org/10.1111/1365-2656.13154
Fountain-Jones, N. M., Khoo, B. S., Rau, A., Berman, J. D., Burton, E.
N., & Oliver, J. D. (2023). Positive associations matter: Microbial
relationships drive tick microbiome composition. Molecular
Ecology , 32 (14), 4078–4092. https://doi.org/10.1111/mec.16985
Fukaya, K., Kondo, N. I., Matsuzaki, S. S., & Kadoya, T. (2022).
Multispecies site occupancy modelling and study design for spatially
replicated environmental DNA metabarcoding. Methods in Ecology and
Evolution , 13 (1), 183–193.
https://doi.org/10.1111/2041-210X.13732
Gao, M., Xiong, C., Gao, C., Tsui, C. K. M., Wang, M.-M., Zhou, X.,
Zhang, A.-M., & Cai, L. (2021). Disease-induced changes in plant
microbiome assembly and functional adaptation. Microbiome ,9 (1), 187. https://doi.org/10.1186/s40168-021-01138-2
George, P. B. L., Lallias, D., Creer, S., Seaton, F. M., Kenny, J. G.,
Eccles, R. M., Griffiths, R. I., Lebron, I., Emmett, B. A., Robinson, D.
A., & Jones, D. L. (2019). Divergent national-scale trends of microbial
and animal biodiversity revealed across diverse temperate soil
ecosystems. Nature Communications , 10 (1), 1107.
https://doi.org/10.1038/s41467-019-09031-1
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J.
(2017). Microbiome Datasets Are Compositional: And This Is Not Optional.Frontiers in Microbiology , 8 .
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224
Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of
co-occurrence networks in soil ecology. Soil Biology and
Biochemistry , 166 , 108534.
https://doi.org/10.1016/j.soilbio.2021.108534
Goyal, A., Bittleston, L. S., Leventhal, G. E., Lu, L., & Cordero, O.
X. (2022). Interactions between strains govern the eco-evolutionary
dynamics of microbial communities. ELife , 11 , e74987.
https://doi.org/10.7554/eLife.74987
Grantham, N. S., Guan, Y., Reich, B. J., Borer, E. T., & Gross, K.
(2020). MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From
Designed Experiments. Journal of the American Statistical
Association , 115 (530), 599–609.
https://doi.org/10.1080/01621459.2019.1626242
Grosser, S., Sauer, J., Paijmans, A. J., Caspers, B. A., Forcada, J.,
Wolf, J. B. W., & Hoffman, J. I. (2019). Fur seal microbiota are shaped
by the social and physical environment, show mother–offspring
similarities and are associated with host genetic quality.Molecular Ecology , 28 (9), 2406–2422.
https://doi.org/10.1111/mec.15070
Hakimzadeh, A., Abdala Asbun, A., Albanese, D., Bernard, M., Buchner,
D., Callahan, B., Caporaso, J. G., Curd, E., Djemiel, C., Brandström
Durling, M., Elbrecht, V., Gold, Z., Gweon, H. S., Hajibabaei, M.,
Hildebrand, F., Mikryukov, V., Normandeau, E., Özkurt, E., M. Palmer,
J., … Anslan, S. (n.d.). A pile of pipelines: An overview of the
bioinformatics software for metabarcoding data analyses. Molecular
Ecology Resources , n/a (n/a).
https://doi.org/10.1111/1755-0998.13847
Harrison, J. G., John Calder, W., Shuman, B., & Alex Buerkle, C.
(2020). The quest for absolute abundance: The use of internal standards
for DNA‐based community ecology. Molecular Ecology Resources ,
1755-0998.13247. https://doi.org/10.1111/1755-0998.13247
Hauquier, F., Leliaert, F., Rigaux, A., Derycke, S., & Vanreusel, A.
(2017). Distinct genetic differentiation and species diversification
within two marine nematodes with different habitat preference in
Antarctic sediments. BMC Evolutionary Biology , 17 (1), 120.
https://doi.org/10.1186/s12862-017-0968-1
Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R.,
Guo, C., Olson, S. H., Seimon, A., Seimon, T. A., Ondzie, A. U., Karesh,
W. B., Reed, P., Cameron, K. N., Lipkin, W. I., & Williams, B. L.
(2018). Gut microbiomes of wild great apes fluctuate seasonally in
response to diet. Nature Communications , 9 , 1786.
https://doi.org/10.1038/s41467-018-04204-w
Jervis, P., Pintanel, P., Hopkins, K., Wierzbicki, C., Shelton, J. M.
G., Skelly, E., Rosa, G. M., Almeida-Reinoso, D., Eugenia-Ordoñez, M.,
Ron, S., Harrison, X., Merino-Viteri, A., & Fisher, M. C. (2021).
Post-epizootic microbiome associations across communities of neotropical
amphibians. Molecular Ecology , 30 (5), 1322–1335.
https://doi.org/10.1111/mec.15789
Ji, B. W., Sheth, R. U., Dixit, P. D., Huang, Y., Kaufman, A., Wang, H.
H., & Vitkup, D. (2019). Quantifying spatiotemporal variability and
noise in absolute microbiota abundances using replicate sampling.Nature Methods , 16 (8), Article 8.
https://doi.org/10.1038/s41592-019-0467-y
Karmacharya, D., Manandhar, P., Manandhar, S., Sherchan, A. M., Sharma,
A. N., Joshi, J., Bista, M., Bajracharya, S., Awasthi, N. P., Sharma,
N., Llewellyn, B., Waits, L. P., Thapa, K., Kelly, M. J., Vuyisich, M.,
Starkenburg, S. R., Hero, J.-M., Hughes, J., Wultsch, C., …
Sinha, A. K. (2019). Gut microbiota and their putative metabolic
functions in fragmented Bengal tiger population of Nepal. PLoS
ONE , 14 (8). https://doi.org/10.1371/journal.pone.0221868
Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P., &
Pringle, R. M. (2019). Covariation of diet and gut microbiome in African
megafauna. Proceedings of the National Academy of Sciences of the
United States of America , 116 (47), 23588–23593.
https://doi.org/10.1073/pnas.1905666116
Kim, D., Hofstaedter, C. E., Zhao, C., Mattei, L., Tanes, C., Clarke,
E., Lauder, A., Sherrill-Mix, S., Chehoud, C., Kelsen, J., Conrad, M.,
Collman, R. G., Baldassano, R., Bushman, F. D., & Bittinger, K. (2017).
Optimizing methods and dodging pitfalls in microbiome research.Microbiome , 5 (1), 52.
https://doi.org/10.1186/s40168-017-0267-5
Louca, S., Doebeli, M., & Parfrey, L. W. (2018). Correcting for 16S
rRNA gene copy numbers in microbiome surveys remains an unsolved
problem. Microbiome , 6 (1), 41.
https://doi.org/10.1186/s40168-018-0420-9
Lundberg, D. S., Pramoj Na Ayutthaya, P., Strauß, A., Shirsekar, G., Lo,
W.-S., Lahaye, T., & Weigel, D. (2021). Host-associated microbe PCR
(hamPCR) enables convenient measurement of both microbial load and
community composition. ELife , 10 , e66186.
https://doi.org/10.7554/eLife.66186
McClenaghan, B., Compson, Z. G., & Hajibabaei, M. (2020). Validating
metabarcoding-based biodiversity assessments with multi-species
occupancy models: A case study using coastal marine eDNA. PLOS
ONE , 15 (3), e0224119.
https://doi.org/10.1371/journal.pone.0224119
Minich, J. J., Sanders, J. G., Amir, A., Humphrey, G., Gilbert, J. A.,
& Knight, R. (2019). Quantifying and Understanding Well-to-Well
Contamination in Microbiome Research. MSystems , 4 (4),
10.1128/msystems.00186-19. https://doi.org/10.1128/msystems.00186-19
Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate
perturbs the gut microbiota of honey bees. Proceedings of the
National Academy of Sciences , 115 (41), 10305–10310.
https://doi.org/10.1073/pnas.1803880115
Nagler, M., Podmirseg, S. M., Ascher-Jenull, J., Sint, D., & Traugott,
M. (2022). Why eDNA fractions need consideration in biomonitoring.Molecular Ecology Resources , 22 (7), 2458–2470.
https://doi.org/10.1111/1755-0998.13658
Nascimento, F. J. A., Lallias, D., Bik, H. M., & Creer, S. (2018).
Sample size effects on the assessment of eukaryotic diversity and
community structure in aquatic sediments using high-throughput
sequencing. Scientific Reports , 8 (1), Article 1.
https://doi.org/10.1038/s41598-018-30179-1
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan,
L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more out
of community data? A conceptual framework and its implementation as
models and software. Ecology Letters , 20 (5), 561–576.
https://doi.org/10.1111/ele.12757
Peng, L., Hoban, J., Joffe, J., Smith, A. H., Carpenter, M., Marcelis,
T., Patel, V., Lynn-Bell, N., Oliver, K. M., & Russell, J. A. (n.d.).
Cryptic community structure and metabolic interactions among the
heritable facultative symbionts of the pea aphid. Journal of
Evolutionary Biology , n/a (n/a).
https://doi.org/10.1111/jeb.14216
Pichler, M., & Hartig, F. (2021). A new joint species distribution
model for faster and more accurate inference of species associations
from big community data. Methods in Ecology and Evolution ,12 (11), 2159–2173. https://doi.org/10.1111/2041-210X.13687
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B.,
Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding
co-occurrence by modelling species simultaneously with a Joint Species
Distribution Model (JSDM). Methods in Ecology and Evolution ,5 (5), 397–406. https://doi.org/10.1111/2041-210X.12180
Powell-Romero, F., Fountain-Jones, N. M., Norberg, A., & Clark, N. J.
(2023). Improving the predictability and interpretability of
co-occurrence modelling through feature-based joint species distribution
ensembles. Methods in Ecology and Evolution , 14 (1),
146–161. https://doi.org/10.1111/2041-210X.13915
Raghwani, J., Faust, C. L., François, S., Nguyen, D., Marsh, K., Raulo,
A., Hill, S. C., Parag, K. V., Simmonds, P., Knowles, S. C. L., &
Pybus, O. G. (n.d.). Seasonal dynamics of the wild rodent faecal virome.Molecular Ecology , n/a (n/a).
https://doi.org/10.1111/mec.16778
Rubin, B. E. R., Kautz, S., Wray, B. D., & Moreau, C. S. (2019).
Dietary specialization in mutualistic acacia-ants affects relative
abundance but not identity of host-associated bacteria. Molecular
Ecology , 28 (4), 900–916. https://doi.org/10.1111/mec.14834
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O.,
Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W.
(2014). Reagent and laboratory contamination can critically impact
sequence-based microbiome analyses. BMC Biology , 12 , 87.
https://doi.org/10.1186/s12915-014-0087-z
Santos-Júnior, C. D., Logares, R., & Henrique-Silva, F. (2022).
Microbial population genomes from the Amazon River reveal possible
modulation of the organic matter degradation process in tropical
freshwaters. Molecular Ecology , 31 (1), 206–219.
https://doi.org/10.1111/mec.16222
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps
illuminated—Reducing sequence-to-sample misidentifications in
metabarcoding studies. Molecular Ecology Resources , 15 (6),
1289–1303. https://doi.org/10.1111/1755-0998.12402
Shade, A. (2017). Diversity is the question, not the answer. The
ISME Journal , 11 (1), 1–6.
https://doi.org/10.1038/ismej.2016.118
Sommer, R. J., Dardiry, M., Lenuzzi, M., Namdeo, S., Renahan, T.,
Sieriebriennikov, B., & Werner, M. S. (2017). The genetics of
phenotypic plasticity in nematode feeding structures. Open
Biology , 7 (3), 160332. https://doi.org/10.1098/rsob.160332
Stein, R. R., Bucci, V., Toussaint, N. C., Buffie, C. G., Rätsch, G.,
Pamer, E. G., Sander, C., & Xavier, J. B. (2013). Ecological Modeling
from Time-Series Inference: Insight into Dynamics and Stability of
Intestinal Microbiota. PLOS Computational Biology , 9 (12),
e1003388. https://doi.org/10.1371/journal.pcbi.1003388
Stothart, M. R., Greuel, R. J., Gavriliuc, S., Henry, A., Wilson, A. J.,
McLoughlin, P. D., & Poissant, J. (2021). Bacterial dispersal and drift
drive microbiome diversity patterns within a population of feral hindgut
fermenters. Molecular Ecology , 30 (2), 555–571.
https://doi.org/10.1111/mec.15747
Sutherland, J., Bell, T., Trexler, R. V., Carlson, J. E., & Lasky, J.
R. (2022). Host genomic influence on bacterial composition in the
switchgrass rhizosphere. Molecular Ecology , 31 (14),
3934–3950. https://doi.org/10.1111/mec.16549
Taberlet, P., Bonin, A., Zinger, L., & Coissac, É. (2018).
Environmental DNA: For Biodiversity Research and Monitoring. InEnvironmental DNA: For Biodiversity Research and Monitoring .
https://doi.org/10.1093/oso/9780198767220.001.0001
Torti, A., Lever, M. A., & Jørgensen, B. B. (2015). Origin, dynamics,
and implications of extracellular DNA pools in marine sediments.Marine Genomics , 24 Pt 3 , 185–196.
https://doi.org/10.1016/j.margen.2015.08.007
Trego, A., Keating, C., Nzeteu, C., Graham, A., O’Flaherty, V., & Ijaz,
U. Z. (2022). Beyond Basic Diversity Estimates—Analytical Tools for
Mechanistic Interpretations of Amplicon Sequencing Data.Microorganisms , 10 (10), Article 10.
https://doi.org/10.3390/microorganisms10101961
Vos, M., Wolf, A. B., Jennings, S. J., & Kowalchuk, G. A. (2013).
Micro-scale determinants of bacterial diversity in soil. FEMS
Microbiology Reviews , 37 (6), 936–954.
https://doi.org/10.1111/1574-6976.12023
Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen,
S., Walker, S. C., & Hui, F. K. C. (2015). So many variables: Joint
modeling in community ecology. Trends in Ecology & Evolution ,30 (12), 766–779. https://doi.org/10.1016/j.tree.2015.09.007
Warton, D. I., Wright, S. T., & Wang, Y. (2012). Distance-based
multivariate analyses confound location and dispersion effects.Methods in Ecology and Evolution , 3 (1), 89–101.
https://doi.org/10.1111/j.2041-210X.2011.00127.x
West, A. G., Digby, A., Santure, A. W., Guhlin, J. G., Dearden, P.,
Kākāpō Recovery Team, Taylor, M. W., & Urban, L. (2023). Capturing
species-wide diversity of the gut microbiota and its relationship with
genomic variation in the critically endangered kākāpō. Molecular
Ecology , 32 (15), 4224–4241. https://doi.org/10.1111/mec.16999
Wille, M., Eden, J.-S., Shi, M., Klaassen, M., Hurt, A. C., & Holmes,
E. C. (2018). Virus–virus interactions and host ecology are associated
with RNA virome structure in wild birds. Molecular Ecology ,27 (24), 5263–5278. https://doi.org/10.1111/mec.14918
Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K.,
& DeWoody, J. A. (2016). The importance of including imperfect
detection models in eDNA experimental design. Molecular Ecology
Resources , 16 (4), 837–844.
https://doi.org/10.1111/1755-0998.12531
Wood, G., Steinberg, P. D., Campbell, A. H., Vergés, A., Coleman, M. A.,
& Marzinelli, E. M. (2022). Host genetics, phenotype and geography
structure the microbiome of a foundational seaweed. Molecular
Ecology , 31 (7), 2189–2206. https://doi.org/10.1111/mec.16378
Woodcock, S., van der Gast, C. J., Bell, T., Lunn, M., Curtis, T. P.,
Head, I. M., & Sloan, W. T. (2007). Neutral assembly of bacterial
communities. FEMS Microbiology Ecology , 62 (2), 171–180.
https://doi.org/10.1111/j.1574-6941.2007.00379.x
Wu, L., Yang, F., Feng, J., Tao, X., Qi, Q., Wang, C., Schuur, E. A. G.,
Bracho, R., Huang, Y., Cole, J. R., Tiedje, J. M., & Zhou, J. (2022).
Permafrost thaw with warming reduces microbial metabolic capacities in
subsurface soils. Molecular Ecology , 31 (5), 1403–1415.
https://doi.org/10.1111/mec.16319
Zapala, M. A., & Schork, N. J. (2012). Statistical properties of
multivariate distance matrix regression for high-dimensional data
analysis. Frontiers in Genetics , 3 , 190.
https://doi.org/10.3389/fgene.2012.00190
Zhang, Z., Geng, J., Tang, X., Fan, H., Xu, J., Wen, X., Ma, Z. (Sam),
& Shi, P. (2014). Spatial heterogeneity and co-occurrence patterns of
human mucosal-associated intestinal microbiota. The ISME Journal ,8 (4), Article 4. https://doi.org/10.1038/ismej.2013.185
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F.,
Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., De Barba, M.,
Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli,
L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., … Taberlet, P.
(2019). DNA metabarcoding—Need for robust experimental designs to draw
sound ecological conclusions. Molecular Ecology , 28 (8),
1857–1862. https://doi.org/10.1111/mec.15060