References
Anderson, B. D., & Bisanz, J. E. (2023). Challenges and opportunities of strain diversity in gut microbiome research. Frontiers in Microbiology , 14 . https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117122
Barlow, J. T., Bogatyrev, S. R., & Ismagilov, R. F. (2020). A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nature Communications ,11 (1), Article 1. https://doi.org/10.1038/s41467-020-16224-6
Barreto, H. C., & Gordo, I. (2023). Intrahost evolution of the gut microbiota. Nature Reviews Microbiology , 21 (9), Article 9. https://doi.org/10.1038/s41579-023-00890-6
Barreto, H. C., Sousa, A., & Gordo, I. (2020). The Landscape of Adaptive Evolution of a Gut Commensal Bacteria in Aging Mice.Current Biology , 30 (6), 1102-1109.e5. https://doi.org/10.1016/j.cub.2020.01.037
Béchade, B., Cabuslay, C. S., Hu, Y., Mendonca, C. M., Hassanpour, B., Lin, J. Y., Su, Y., Fiers, V. J., Anandarajan, D., Lu, R., Olson, C. J., Duplais, C., Rosen, G. L., Moreau, C. S., Aristilde, L., Wertz, J. T., & Russell, J. A. (2023). Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. The ISME Journal , 17 (10), 1751–1764. https://doi.org/10.1038/s41396-023-01490-1
Bergner, L. M., Orton, R. J., Benavides, J. A., Becker, D. J., Tello, C., Biek, R., & Streicker, D. G. (2020). Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Molecular Ecology , 29 (1), 26–39. https://doi.org/10.1111/mec.15250
Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J., & Cote, J. (2017). Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nature Ecology & Evolution , 1 (6), 161. https://doi.org/10.1038/s41559-017-0161
Björk, J. R., Hui, F. K. C., O’Hara, R. B., & Montoya, J. M. (2018). Uncovering the drivers of host-associated microbiota with joint species distribution modelling. Molecular Ecology , 27 (12), 2714–2724. https://doi.org/10.1111/mec.14718
Blanchet, F. G., Cazelles, K., & Gravel, D. (2020). Co-occurrence is not evidence of ecological interactions. Ecology Letters ,23 (7), 1050–1063. https://doi.org/10.1111/ele.13525
Bohmann, K., Elbrecht, V., Carøe, C., Bista, I., Leese, F., Bunce, M., Yu, D. W., Seymour, M., Dumbrell, A. J., & Creer, S. (2022). Strategies for sample labelling and library preparation in DNA metabarcoding studies. Molecular Ecology Resources , 22 (4), 1231–1246. https://doi.org/10.1111/1755-0998.13512
Boshuizen, H. C., & te Beest, D. E. (2023). Pitfalls in the statistical analysis of microbiome amplicon sequencing data. Molecular Ecology Resources , 23 (3), 539–548. https://doi.org/10.1111/1755-0998.13730
Bozzi, D., Rasmussen, J. A., Carøe, C., Sveier, H., Nordøy, K., Gilbert, M. T. P., & Limborg, M. T. (2021). Salmon gut microbiota correlates with disease infection status: Potential for monitoring health in farmed animals. Animal Microbiome , 3 (1), 30. https://doi.org/10.1186/s42523-021-00096-2
Brown, B. R. P., Goheen, J. R., Newsome, S. D., Pringle, R. M., Palmer, T. M., Khasoha, L. M., & Kartzinel, T. R. (2023). Host phylogeny and functional traits differentiate gut microbiomes in a diverse natural community of small mammals. Molecular Ecology , 32 (9), 2320–2334. https://doi.org/10.1111/mec.16874
Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., McGill, S. K., & Dougherty, M. K. (2019). High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Research ,47 (18), e103. https://doi.org/10.1093/nar/gkz569
Carlsen, T., Aas, A. B., Lindner, D., Vrålstad, T., Schumacher, T., & Kauserud, H. (2012). Don’t make a mista(g)ke: Is tag switching an overlooked source of error in amplicon pyrosequencing studies?Fungal Ecology , 5 (6), 747–749. https://doi.org/10.1016/j.funeco.2012.06.003
Carøe, C., & Bohmann, K. (2020). Tagsteady: A metabarcoding library preparation protocol to avoid false assignment of sequences to samples.Molecular Ecology Resources , 20 (6), 1620–1631. https://doi.org/10.1111/1755-0998.13227
Chen, J., & Zhang, X. (2021). D-MANOVA: Fast distance-based multivariate analysis of variance for large-scale microbiome association studies. Bioinformatics , 38 (1), 286–288. https://doi.org/10.1093/bioinformatics/btab498
Clark, N. J., Wells, K., & Lindberg, O. (2018). Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology , 99 (6), 1277–1283. https://doi.org/10.1002/ecy.2221
Couch, C. E., Stagaman, K., Spaan, R. S., Combrink, H. J., Sharpton, T. J., Beechler, B. R., & Jolles, A. E. (2021). Diet and gut microbiome enterotype are associated at the population level in African buffalo.Nature Communications , 12 (1), Article 1. https://doi.org/10.1038/s41467-021-22510-8
Coyte, K. Z., Rao, C., Rakoff-Nahoum, S., & Foster, K. R. (2021). Ecological rules for the assembly of microbiome communities. PLOS Biology , 19 (2), e3001116. https://doi.org/10.1371/journal.pbio.3001116
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.Microbiome , 6 (1), 226. https://doi.org/10.1186/s40168-018-0605-2
de Goffau, M. C., Lager, S., Salter, S. J., Wagner, J., Kronbichler, A., Charnock-Jones, D. S., Peacock, S. J., Smith, G. C. S., & Parkhill, J. (2018). Recognizing the reagent microbiome. Nature Microbiology ,3 (8), Article 8. https://doi.org/10.1038/s41564-018-0202-y
Edgar, R. C. (2018). UNCROSS2: Identification of cross-talk in 16S rRNA OTU tables (p. 400762). bioRxiv. https://doi.org/10.1101/400762
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., & Weyrich, L. S. (2019). Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends in Microbiology ,27 (2), 105–117. https://doi.org/10.1016/j.tim.2018.11.003
Esling, P., Lejzerowicz, F., & Pawlowski, J. (2015). Accurate multiplexing and filtering for high-throughput amplicon-sequencing.Nucleic Acids Research , 43 (5), 2513–2524. https://doi.org/10.1093/nar/gkv107
Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Rayé, G., & Taberlet, P. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data.Molecular Ecology Resources , 15 (3), 543–556. https://doi.org/10.1111/1755-0998.12338
Fountain-Jones, N., Kozakiewicz, C., Forester, B., Landguth, E., Carver, S., Charleston, M., Gagne, R., Greenwell, B., Kraberger, S., Trumbo, D., Mayer, M., Clark, N., & Machado, G. (2021). MrIML: Multi-response interpretable machine learning to map genomic landscapes.Molecular Ecology Resources , 21 , 2766–2781. https://doi.org/10.22541/au.160855820.09604024/v1
Fountain-Jones, N. M., Clark, N. J., Kinsley, A. C., Carstensen, M., Forester, J., Johnson, T. J., Miller, E. A., Moore, S., Wolf, T. M., & Craft, M. E. (2020). Microbial associations and spatial proximity predict North American moose (Alces alces) gastrointestinal community composition. Journal of Animal Ecology , 89 (3). https://doi.org/10.1111/1365-2656.13154
Fountain-Jones, N. M., Khoo, B. S., Rau, A., Berman, J. D., Burton, E. N., & Oliver, J. D. (2023). Positive associations matter: Microbial relationships drive tick microbiome composition. Molecular Ecology , 32 (14), 4078–4092. https://doi.org/10.1111/mec.16985
Fukaya, K., Kondo, N. I., Matsuzaki, S. S., & Kadoya, T. (2022). Multispecies site occupancy modelling and study design for spatially replicated environmental DNA metabarcoding. Methods in Ecology and Evolution , 13 (1), 183–193. https://doi.org/10.1111/2041-210X.13732
Gao, M., Xiong, C., Gao, C., Tsui, C. K. M., Wang, M.-M., Zhou, X., Zhang, A.-M., & Cai, L. (2021). Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome ,9 (1), 187. https://doi.org/10.1186/s40168-021-01138-2
George, P. B. L., Lallias, D., Creer, S., Seaton, F. M., Kenny, J. G., Eccles, R. M., Griffiths, R. I., Lebron, I., Emmett, B. A., Robinson, D. A., & Jones, D. L. (2019). Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nature Communications , 10 (1), 1107. https://doi.org/10.1038/s41467-019-09031-1
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome Datasets Are Compositional: And This Is Not Optional.Frontiers in Microbiology , 8 . https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224
Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry , 166 , 108534. https://doi.org/10.1016/j.soilbio.2021.108534
Goyal, A., Bittleston, L. S., Leventhal, G. E., Lu, L., & Cordero, O. X. (2022). Interactions between strains govern the eco-evolutionary dynamics of microbial communities. ELife , 11 , e74987. https://doi.org/10.7554/eLife.74987
Grantham, N. S., Guan, Y., Reich, B. J., Borer, E. T., & Gross, K. (2020). MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments. Journal of the American Statistical Association , 115 (530), 599–609. https://doi.org/10.1080/01621459.2019.1626242
Grosser, S., Sauer, J., Paijmans, A. J., Caspers, B. A., Forcada, J., Wolf, J. B. W., & Hoffman, J. I. (2019). Fur seal microbiota are shaped by the social and physical environment, show mother–offspring similarities and are associated with host genetic quality.Molecular Ecology , 28 (9), 2406–2422. https://doi.org/10.1111/mec.15070
Hakimzadeh, A., Abdala Asbun, A., Albanese, D., Bernard, M., Buchner, D., Callahan, B., Caporaso, J. G., Curd, E., Djemiel, C., Brandström Durling, M., Elbrecht, V., Gold, Z., Gweon, H. S., Hajibabaei, M., Hildebrand, F., Mikryukov, V., Normandeau, E., Özkurt, E., M. Palmer, J., … Anslan, S. (n.d.). A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses. Molecular Ecology Resources , n/a (n/a). https://doi.org/10.1111/1755-0998.13847
Harrison, J. G., John Calder, W., Shuman, B., & Alex Buerkle, C. (2020). The quest for absolute abundance: The use of internal standards for DNA‐based community ecology. Molecular Ecology Resources , 1755-0998.13247. https://doi.org/10.1111/1755-0998.13247
Hauquier, F., Leliaert, F., Rigaux, A., Derycke, S., & Vanreusel, A. (2017). Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments. BMC Evolutionary Biology , 17 (1), 120. https://doi.org/10.1186/s12862-017-0968-1
Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, S. H., Seimon, A., Seimon, T. A., Ondzie, A. U., Karesh, W. B., Reed, P., Cameron, K. N., Lipkin, W. I., & Williams, B. L. (2018). Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nature Communications , 9 , 1786. https://doi.org/10.1038/s41467-018-04204-w
Jervis, P., Pintanel, P., Hopkins, K., Wierzbicki, C., Shelton, J. M. G., Skelly, E., Rosa, G. M., Almeida-Reinoso, D., Eugenia-Ordoñez, M., Ron, S., Harrison, X., Merino-Viteri, A., & Fisher, M. C. (2021). Post-epizootic microbiome associations across communities of neotropical amphibians. Molecular Ecology , 30 (5), 1322–1335. https://doi.org/10.1111/mec.15789
Ji, B. W., Sheth, R. U., Dixit, P. D., Huang, Y., Kaufman, A., Wang, H. H., & Vitkup, D. (2019). Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling.Nature Methods , 16 (8), Article 8. https://doi.org/10.1038/s41592-019-0467-y
Karmacharya, D., Manandhar, P., Manandhar, S., Sherchan, A. M., Sharma, A. N., Joshi, J., Bista, M., Bajracharya, S., Awasthi, N. P., Sharma, N., Llewellyn, B., Waits, L. P., Thapa, K., Kelly, M. J., Vuyisich, M., Starkenburg, S. R., Hero, J.-M., Hughes, J., Wultsch, C., … Sinha, A. K. (2019). Gut microbiota and their putative metabolic functions in fragmented Bengal tiger population of Nepal. PLoS ONE , 14 (8). https://doi.org/10.1371/journal.pone.0221868
Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P., & Pringle, R. M. (2019). Covariation of diet and gut microbiome in African megafauna. Proceedings of the National Academy of Sciences of the United States of America , 116 (47), 23588–23593. https://doi.org/10.1073/pnas.1905666116
Kim, D., Hofstaedter, C. E., Zhao, C., Mattei, L., Tanes, C., Clarke, E., Lauder, A., Sherrill-Mix, S., Chehoud, C., Kelsen, J., Conrad, M., Collman, R. G., Baldassano, R., Bushman, F. D., & Bittinger, K. (2017). Optimizing methods and dodging pitfalls in microbiome research.Microbiome , 5 (1), 52. https://doi.org/10.1186/s40168-017-0267-5
Louca, S., Doebeli, M., & Parfrey, L. W. (2018). Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome , 6 (1), 41. https://doi.org/10.1186/s40168-018-0420-9
Lundberg, D. S., Pramoj Na Ayutthaya, P., Strauß, A., Shirsekar, G., Lo, W.-S., Lahaye, T., & Weigel, D. (2021). Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. ELife , 10 , e66186. https://doi.org/10.7554/eLife.66186
McClenaghan, B., Compson, Z. G., & Hajibabaei, M. (2020). Validating metabarcoding-based biodiversity assessments with multi-species occupancy models: A case study using coastal marine eDNA. PLOS ONE , 15 (3), e0224119. https://doi.org/10.1371/journal.pone.0224119
Minich, J. J., Sanders, J. G., Amir, A., Humphrey, G., Gilbert, J. A., & Knight, R. (2019). Quantifying and Understanding Well-to-Well Contamination in Microbiome Research. MSystems , 4 (4), 10.1128/msystems.00186-19. https://doi.org/10.1128/msystems.00186-19
Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences , 115 (41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
Nagler, M., Podmirseg, S. M., Ascher-Jenull, J., Sint, D., & Traugott, M. (2022). Why eDNA fractions need consideration in biomonitoring.Molecular Ecology Resources , 22 (7), 2458–2470. https://doi.org/10.1111/1755-0998.13658
Nascimento, F. J. A., Lallias, D., Bik, H. M., & Creer, S. (2018). Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Scientific Reports , 8 (1), Article 1. https://doi.org/10.1038/s41598-018-30179-1
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters , 20 (5), 561–576. https://doi.org/10.1111/ele.12757
Peng, L., Hoban, J., Joffe, J., Smith, A. H., Carpenter, M., Marcelis, T., Patel, V., Lynn-Bell, N., Oliver, K. M., & Russell, J. A. (n.d.). Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. Journal of Evolutionary Biology , n/a (n/a). https://doi.org/10.1111/jeb.14216
Pichler, M., & Hartig, F. (2021). A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods in Ecology and Evolution ,12 (11), 2159–2173. https://doi.org/10.1111/2041-210X.13687
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution ,5 (5), 397–406. https://doi.org/10.1111/2041-210X.12180
Powell-Romero, F., Fountain-Jones, N. M., Norberg, A., & Clark, N. J. (2023). Improving the predictability and interpretability of co-occurrence modelling through feature-based joint species distribution ensembles. Methods in Ecology and Evolution , 14 (1), 146–161. https://doi.org/10.1111/2041-210X.13915
Raghwani, J., Faust, C. L., François, S., Nguyen, D., Marsh, K., Raulo, A., Hill, S. C., Parag, K. V., Simmonds, P., Knowles, S. C. L., & Pybus, O. G. (n.d.). Seasonal dynamics of the wild rodent faecal virome.Molecular Ecology , n/a (n/a). https://doi.org/10.1111/mec.16778
Rubin, B. E. R., Kautz, S., Wray, B. D., & Moreau, C. S. (2019). Dietary specialization in mutualistic acacia-ants affects relative abundance but not identity of host-associated bacteria. Molecular Ecology , 28 (4), 900–916. https://doi.org/10.1111/mec.14834
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology , 12 , 87. https://doi.org/10.1186/s12915-014-0087-z
Santos-Júnior, C. D., Logares, R., & Henrique-Silva, F. (2022). Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Molecular Ecology , 31 (1), 206–219. https://doi.org/10.1111/mec.16222
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps illuminated—Reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources , 15 (6), 1289–1303. https://doi.org/10.1111/1755-0998.12402
Shade, A. (2017). Diversity is the question, not the answer. The ISME Journal , 11 (1), 1–6. https://doi.org/10.1038/ismej.2016.118
Sommer, R. J., Dardiry, M., Lenuzzi, M., Namdeo, S., Renahan, T., Sieriebriennikov, B., & Werner, M. S. (2017). The genetics of phenotypic plasticity in nematode feeding structures. Open Biology , 7 (3), 160332. https://doi.org/10.1098/rsob.160332
Stein, R. R., Bucci, V., Toussaint, N. C., Buffie, C. G., Rätsch, G., Pamer, E. G., Sander, C., & Xavier, J. B. (2013). Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLOS Computational Biology , 9 (12), e1003388. https://doi.org/10.1371/journal.pcbi.1003388
Stothart, M. R., Greuel, R. J., Gavriliuc, S., Henry, A., Wilson, A. J., McLoughlin, P. D., & Poissant, J. (2021). Bacterial dispersal and drift drive microbiome diversity patterns within a population of feral hindgut fermenters. Molecular Ecology , 30 (2), 555–571. https://doi.org/10.1111/mec.15747
Sutherland, J., Bell, T., Trexler, R. V., Carlson, J. E., & Lasky, J. R. (2022). Host genomic influence on bacterial composition in the switchgrass rhizosphere. Molecular Ecology , 31 (14), 3934–3950. https://doi.org/10.1111/mec.16549
Taberlet, P., Bonin, A., Zinger, L., & Coissac, É. (2018). Environmental DNA: For Biodiversity Research and Monitoring. InEnvironmental DNA: For Biodiversity Research and Monitoring . https://doi.org/10.1093/oso/9780198767220.001.0001
Torti, A., Lever, M. A., & Jørgensen, B. B. (2015). Origin, dynamics, and implications of extracellular DNA pools in marine sediments.Marine Genomics , 24 Pt 3 , 185–196. https://doi.org/10.1016/j.margen.2015.08.007
Trego, A., Keating, C., Nzeteu, C., Graham, A., O’Flaherty, V., & Ijaz, U. Z. (2022). Beyond Basic Diversity Estimates—Analytical Tools for Mechanistic Interpretations of Amplicon Sequencing Data.Microorganisms , 10 (10), Article 10. https://doi.org/10.3390/microorganisms10101961
Vos, M., Wolf, A. B., Jennings, S. J., & Kowalchuk, G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews , 37 (6), 936–954. https://doi.org/10.1111/1574-6976.12023
Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen, S., Walker, S. C., & Hui, F. K. C. (2015). So many variables: Joint modeling in community ecology. Trends in Ecology & Evolution ,30 (12), 766–779. https://doi.org/10.1016/j.tree.2015.09.007
Warton, D. I., Wright, S. T., & Wang, Y. (2012). Distance-based multivariate analyses confound location and dispersion effects.Methods in Ecology and Evolution , 3 (1), 89–101. https://doi.org/10.1111/j.2041-210X.2011.00127.x
West, A. G., Digby, A., Santure, A. W., Guhlin, J. G., Dearden, P., Kākāpō Recovery Team, Taylor, M. W., & Urban, L. (2023). Capturing species-wide diversity of the gut microbiota and its relationship with genomic variation in the critically endangered kākāpō. Molecular Ecology , 32 (15), 4224–4241. https://doi.org/10.1111/mec.16999
Wille, M., Eden, J.-S., Shi, M., Klaassen, M., Hurt, A. C., & Holmes, E. C. (2018). Virus–virus interactions and host ecology are associated with RNA virome structure in wild birds. Molecular Ecology ,27 (24), 5263–5278. https://doi.org/10.1111/mec.14918
Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K., & DeWoody, J. A. (2016). The importance of including imperfect detection models in eDNA experimental design. Molecular Ecology Resources , 16 (4), 837–844. https://doi.org/10.1111/1755-0998.12531
Wood, G., Steinberg, P. D., Campbell, A. H., Vergés, A., Coleman, M. A., & Marzinelli, E. M. (2022). Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Molecular Ecology , 31 (7), 2189–2206. https://doi.org/10.1111/mec.16378
Woodcock, S., van der Gast, C. J., Bell, T., Lunn, M., Curtis, T. P., Head, I. M., & Sloan, W. T. (2007). Neutral assembly of bacterial communities. FEMS Microbiology Ecology , 62 (2), 171–180. https://doi.org/10.1111/j.1574-6941.2007.00379.x
Wu, L., Yang, F., Feng, J., Tao, X., Qi, Q., Wang, C., Schuur, E. A. G., Bracho, R., Huang, Y., Cole, J. R., Tiedje, J. M., & Zhou, J. (2022). Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Molecular Ecology , 31 (5), 1403–1415. https://doi.org/10.1111/mec.16319
Zapala, M. A., & Schork, N. J. (2012). Statistical properties of multivariate distance matrix regression for high-dimensional data analysis. Frontiers in Genetics , 3 , 190. https://doi.org/10.3389/fgene.2012.00190
Zhang, Z., Geng, J., Tang, X., Fan, H., Xu, J., Wen, X., Ma, Z. (Sam), & Shi, P. (2014). Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. The ISME Journal ,8 (4), Article 4. https://doi.org/10.1038/ismej.2013.185
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., De Barba, M., Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli, L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., … Taberlet, P. (2019). DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology , 28 (8), 1857–1862. https://doi.org/10.1111/mec.15060