References
Badziong, W., & Thauer, R. K. (1978). Growth yields and growth rates of
Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and
hydrogen plus thiosulfate as the sole energy sources. Archives of
Microbiology, 117 (2), 209-214.
Barton, L. L., & Fauque, G. D. (2009). Chapter 2 Biochemistry,
Physiology and Biotechnology of Sulfate-Reducing Bacteria.Advances in Applied Microbiology, 68 (09), 41-98.
doi:10.1016/S0065-2164(09)01202-7
Beech, I. B., & Sunner, J. (2007). Sulphate-reducing bacteria and their
role in corrosion of ferrous materials. In Sulphate-reducing
bacteria: environmental and engineered systems (pp. 459-482): Cambridge
University Press.
Blom, J., Kreis, J., Spänig, S., Juhre, T., Bertelli, C., Ernst, C., &
Goesmann, A. (2016). EDGAR 2.0: an enhanced software platform for
comparative gene content analyses. Nucleic acids research,
44 (W1), W28-W28. doi:10.1093/nar/gkw255
Brister, J. R., Ako-Adjei, D., Bao, Y., & Blinkova, O. (2014). NCBI
viral genomes resource. Nucleic acids research, 43 (D1),
D577-D577. doi:10.1093/nar/gku1207
Bruschi, M., Barton, L. L., Goulhen, F., & Plunkett, R. M. (2007).
Enzymatic and genomic studies on the reduction of mercury and selected
metallic oxyanions by sulphate-reducing bacteria. InSulphate-Reducing Bacteria: Environmental and Engineered Systems(pp. 435-457): Cambridge University Press.
Buckel, W., & Thauer, R. K. (2018). Flavin-based electron bifurcation,
ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or
NAD+ (Rnf) as electron acceptors: A historical review. Frontiers
in microbiology, 9 , 401.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,
Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and
applications. BMC Bioinformatics, 10 (1), 421-421.
doi:10.1186/1471-2105-10-421
Chaudhari, N. M., Gupta, V. K., & Dutta, C. (2016). BPGA-an ultra-fast
pan-genome analysis pipeline. Scientific reports, 6 , 24373-24373.
doi:10.1038/srep24373
Edirisinghe, J. N., Weisenhorn, P., Conrad, N., Xia, F., Overbeek, R.,
Stevens, R. L., & Henry, C. S. (2016). Modeling central metabolism and
energy biosynthesis across microbial life. BMC Genomics, 17 (1),
568-568. doi:10.1186/s12864-016-2887-8
Fitz, R. M., & Cypionka, H. (1989). A study on electron
transport-driven proton translocation in Desulfovibrio desulfuricans.Archives of Microbiology, 152 (4), 369-376. doi:10.1007/BF00425175
Goldstein, E. J., Citron, D. M., Peraino, V. A., & Cross, S. A. (2003).
Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio
infections. Journal of clinical microbiology, 41 (6), 2752-2754.
doi:10.1128/jcm.41.6.2752-2754.2003
Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019).
Current status and applications of genome-scale metabolic models.Genome Biology, 20 (1), 121. doi:10.1186/s13059-019-1730-3
Hao, T., Xiang, P., Mackey, H. R., Chi, K., Lu, H., Chui, H., . . .
Chen, G. (2014). A review of biological sulfate conversions in
wastewater treatment. Water research, 65 , 1-21.
doi:10.1016/j.watres.2014.06.043
Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A.,
Heinken, A., . . . Wachowiak, J. (2017). Creation and analysis of
biochemical constraint-based models: the COBRA Toolbox v3. 0.arXiv preprint arXiv:1710.04038 .
Kavvas, E. S., Seif, Y., Yurkovich, J. T., Norsigian, C., Poudel, S.,
Greenwald, W. W., . . . Monk, J. M. (2018). Updated and standardized
genome-scale reconstruction of Mycobacterium tuberculosis H37Rv,
iEK1011, simulates flux states indicative of physiological conditions.BMC systems biology, 12 (1), 25-25. doi:10.1186/s12918-018-0557-y
Keller, K. L., & Wall, J. D. (2011). Genetics and molecular biology of
the electron flow for sulfate respiration in Desulfovibrio.Frontiers in microbiology, 2 , 135-135.
doi:10.3389/fmicb.2011.00135
King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J.
A., . . . Lewis, N. E. (2016). BiGG Models: A platform for integrating,
standardizing and sharing genome-scale models. Nucleic Acids
Research . doi:10.1093/nar/gkv1049
Kobayashi, K., Hasegawa, H., Takagi, M., & Ishimoto, M. (1982). Proton
translocation associated with sulfite reduction in a sulfate-reducing
bacterium, Desulfovibrio vulgaris. FEBS Letters, 142 (2), 235-237.
doi:10.1016/0014-5793(82)80142-7
Lloyd, J. R. (2003). Microbial reduction of metals and radionuclides.FEMS microbiology reviews, 27 (2-3), 411-425.
doi:10.1016/S0168-6445(03)00044-5
Loubinoux, J., Bronowicki, J.-P., Pereira, I. A., Mougenel, J.-L., & Le
Faou, A. E. (2002). Sulfate-reducing bacteria in human feces and their
association with inflammatory bowel diseases. FEMS microbiology
ecology, 40 (2), 107-112. doi:10.1016/S0168-6496(02)00201-5
Lundblad, R. L., & Macdonald, F. (2018). Handbook of biochemistry
and molecular biology (4 ed.): CRC Press.
Lupton, F. S., Conrad, R., & Zeikus, J. G. (1984). Physiological
function of hydrogen metabolism during growth of sulfidogenic bacteria
on organic substrates. Journal of Bacteriology, 159 (3), 843-849.
Machado, D., Andrejev, S., Tramontano, M., & Patil, K. R. (2018). Fast
automated reconstruction of genome-scale metabolic models for microbial
species and communities. Nucleic Acids Research, 46 (15),
7542-7553. doi:10.1093/nar/gky537
Monk, J., Nogales, J., & Palsson, B. O. (2014). Optimizing genome-scale
network reconstructions. Nature Biotechnology, 32 (5), 447-447.
doi:10.1038/nbt.2870
Monk, J. M., Charusanti, P., Aziz, R. K., Lerman, J. A., Premyodhin, N.,
Orth, J. D., . . . Palsson, B. Ø. (2013). Genome-scale metabolic
reconstructions of multiple Escherichia coli strains highlight
strain-specific adaptations to nutritional environments.Proceedings of the National Academy of Sciences, 110 (50),
20338-20343. doi:10.1073/pnas.1307797110
Morais-Silva, F. O., Santos, C. I., Rodrigues, R., Pereira, I. A. C., &
Rodrigues-Pousada, C. (2013). Role of HynAB and Ech, the only two
hydrogenases found in the model sulfate reducer Desulfovibrio gigas.Journal of Bacteriology, 195 (20), 13-13. doi:10.1128/Jb.00411-13
Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of
sulphate-reducing bacteria. Nature Reviews Microbiology, 6 (6),
441-454. doi:10.1038/nrmicro1892
Nethe-Jaenchen, R., & Thauer, R. K. (1984). Growth Yields and
Saturation Constant of Desulfovibrio-Vulgaris in Chemostat Culture.Archives of Microbiology, 137 (3), 236-240. doi:Doi
10.1007/Bf00414550
Noguera, D. R., Brusseau, G. A., Rittmann, B. E., & Stahl, D. A.
(1998). Christos. Biotechnology and bioengineering, 59 (6),
732-746.
doi:10.1002/(sici)1097-0290(19980920)59:6<732::aid-bit10>3.0.co;2-7
Oberhardt, M. A., Palsson, B., & Papin, J. A. (2009). Applications of
genome-scale metabolic reconstructions. Molecular systems biology,
5 (1), 320. doi:10.1038/msb.2009.77
Odom, J. M., & Jr, H. D. P. (1981). Hydrogen cycling as a general
mechanism for energy coupling in the sulfate‐reducing bacteria,
Desulfovibrio sp. FEMS microbiology letters, 12 (1), 47-50.
doi:10.1111/j.1574-6968.1981.tb07609.x
Ollivier, B., Cayol, J.-L., & Fauque, G. (2007). Sulphate-reducing
bacteria from oil fields environments and deep-sea hydrothermal vents.
In Sulphate-Reducing Bacteria: Environmental and Engineered
Systems (pp. 305-328): Cambridge University Press.
Orth, J. D., Fleming, R. M., & Palsson, B. (2010a). Reconstruction and
Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic
Model as an Educational Guide. EcoSal Plus, 4 (1).
doi:10.1128/ecosalplus.10.2.1
Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010b). What is flux balance
analysis? Nature biotechnology, 28 (3), 245-248.
Ouzounis, C., & Kyrpides, N. (1996). The emergence of major cellular
processes in evolution. FEBS letters, 390 (2), 119-123.
doi:10.1016/0014-5793(96)00631-x
Pankhania, I. P., Gow, L. A., & Hamilton, W. A. (1986). The Effect of
Hydrogen on the Growth of Desulfovibrio-Vulgaris (Hildenborough) on
Lactate. Journal of General Microbiology, 132 , 3349-3356.
Peck, H. D. (1960). Evidence for oxidative phosphorylation during the
reduction of sulfate with hydrogen by Desulfovibrio desulfuricans.The Journal of biological chemistry, 235 (9), 2734-2738.
Pereira, I. A. C., Ramos, A., Grein, F., Marques, M., Da Silva, S., &
Venceslau, S. (2011). A Comparative Genomic Analysis of Energy
Metabolism in Sulfate Reducing Bacteria and Archaea. Frontiers in
Microbiology, 2 (69). doi:10.3389/fmicb.2011.00069
Pereira, P. M., He, Q., Valente, F. M. A., Xavier, A. V., Zhou, J.,
Pereira, I. A. C., & Louro, R. O. (2008). Energy metabolism in
Desulfovibrio vulgaris Hildenborough: Insights from transcriptome
analysis. Antonie van Leeuwenhoek,, 93 (4), 347-362.
doi:10.1007/s10482-007-9212-0
Pikaar, I., Sharma, K. R., Hu, S., Gernjak, W., Keller, J., & Yuan, Z.
(2014). Reducing sewer corrosion through integrated urban water
management. Science, 345 (6198), 812-814.
doi:10.1126/science.1251418
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree
2-Approximately Maximum-Likelihood Trees for Large Alignments.PloS one, 5 (3), e9490. doi:10.1371/journal.pone.0009490
Price, N. D., Reed, J. L., & Palsson, B. Ø. (2004). Genome-scale models
of microbial cells: evaluating the consequences of constraints.Nature Reviews Microbiology, 2 (11), 886-886.
doi:10.1038/nrmicro1023
Rabus, R., Hansen, T. A., & Widdel, F. (2013). Dissimilatory sulfate-
and sulfur-reducing prokaryotes. In The prokaryotes: prokaryotic
physiology and biochemistry (4 ed., pp. 309-404): Springer Berlin
Heidelberg.
Rabus, R., Venceslau, S. S., Woehlbrand, L., Voordouw, G., Wall, J. D.,
& Pereira, I. A. (2015). A post-genomic view of the ecophysiology,
catabolism and biotechnological relevance of sulphate-reducing
prokaryotes. In Advances in microbial physiology (Vol. 66, pp.
55-321): Elsevier.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I.,
& Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients
and other food components. In (Vol. 57, pp. 1-24): Dr. Dietrich
Steinkopff Verlag GmbH and Co. KG.
Rückert, C. (2016). Sulfate reduction in microorganisms — recent
advances and biotechnological applications. Current Opinion in
Microbiology, 33 , 140-146. doi:10.1016/j.mib.2016.07.007
Schuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of
objective functions for predicting intracellular fluxes in Escherichia
coli. Molecular systems biology, 3 (1), 119-119.
doi:10.1038/msb4100162
Seif, Y., Kavvas, E., Lachance, J.-C., Yurkovich, J. T., Nuccio, S.-P.,
Fang, X., . . . Monk, J. M. (2018). Genome-scale metabolic
reconstructions of multiple Salmonella strains reveal serovar-specific
metabolic traits. Nature communications, 9 (1), 1-12.
doi:10.1038/s41467-018-06112-5
Simon, J., van Spanning, R. J., & Richardson, D. J. (2008). The
organisation of proton motive and non-proton motive redox loops in
prokaryotic respiratory systems. Biochim Biophys Acta, 1777 (12),
1480-1490. doi:10.1016/j.bbabio.2008.09.008
Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur
cycle: An overview of microbiology, biokinetics and their role in
petroleum and mining industries. Biochemical Engineering Journal,
44 (1), 73-94. doi:10.1016/j.bej.2008.12.011
Tang, Y., Pingitore, F., Mukhopadhyay, A., Phan, R., Hazen, T. C., &
Keasling, J. D. (2007). Pathway confirmation and flux analysis of
central metabolic pathways in Desulfovibrio vulgaris Hildenborough using
gas chromatography-mass spectrometry and Fourier transform-ion cyclotron
resonance mass spectrometry. Journal of Bacteriology, 189 (3),
940-949. doi:10.1128/Jb.00948-06
Tatusov, R. L., Galperin, M. Y., Natale, D. A., & Koonin, E. V. (2000).
The COG database: a tool for genome-scale analysis of protein functions
and evolution. Nucleic Acids Research, 28 (1), 33-36.
doi:10.1093/nar/28.1.33
Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation
in chemotrophic anaerobic bacteria. Bacteriological reviews,
41 (1), 100-180.
Thauer, R. K., Stackebrandt, E., & Hamilton, A. W. (2007). Energy
metabolism and phylogenetic diversity of sulphate-reducing bacteria. InSulphate-Reducing Bacteria: Environmental and Engineered Systems(pp. 1-37): Cambridge University Press.
Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a
high-quality genome-scale metabolic reconstruction. Nature
protocols, 5 (1), 93-93. doi:10.1038/nprot.2009.203
Traore, A. S., Fardeau, M. L., Hatchikian, C. E., Legall, J., &
Belaich, J. P. (1983). Energetics of Growth of a Defined Mixed Culture
of Desulfovibrio-Vulgaris and Methanosarcina-Barkeri - Interspecies
Hydrogen Transfer in Batch and Continuous Cultures. Applied and
Environmental Microbiology, 46 (5), 1152-1156.
doi:10.1128/Aem.46.5.1152-1156.1983
Traore, A. S., Hatchikian, C. E., Belaich, J.-P., & Gall, J. L. (1981).
Microcalorimetric studies of the growth of sulfate-reducing bacteria:
energetics of Desulfovibrio vulgaris growth. Journal of
Bacteriology, 145 (1), 191-199.
Vita, N., Valette, O., Brasseur, G., Lignon, S., Denis, Y., Ansaldi, M.,
. . . Pieulle, L. (2015). The primary pathway for lactate oxidation in
Desulfovibrio vulgaris. Frontiers in microbiology, 6 , 606-606.
doi:10.3389/fmicb.2015.00606
Voordouw, G. (2002). Carbon monoxide cycling by Desulfovibrio vulgaris
Hildenborough. Journal of Bacteriology, 184 (21), 5903-5911.
doi:10.1128/jb.184.21.5903-5911.2002
Walker, C. B., He, Z., Yang, Z. K., Ringbauer, J. A., He, Q., Zhou, J.,
. . . Stahl, D. A. (2009). The electron transfer system of
syntrophically grown Desulfovibrio vulgaris. Journal of
Bacteriology, 191 (18), 5793-5801. doi:10.1128/JB.00356-09
Wang, R. (2012). Physiological Implications of Hydrogen Sulfide: A Whiff
Exploration That Blossomed. Physiological Reviews, 92 (2),
791-896. doi:10.1152/physrev.00017.2011
Wood, P. M. (1978). A chemiosmotic model for sulphate respiration.FEBS letters, 95 (1), 12-18. doi:10.1016/0014-5793(78)80042-8
Wu, S., Zhu, Z., Fu, L., Niu, B., & Li, W. (2011). WebMGA: a
customizable web server for fast metagenomic sequence analysis.BMC Genomics, 12 (1), 444-444. doi:10.1186/1471-2164-12-444
Zhou, J. Z., He, Q., Hemme, C. L., Mukhopadhyay, A., Hillesland, K.,
Zhou, A. F., . . . Arkin, A. P. (2011). How sulphate-reducing
microorganisms cope with stress: lessons from systems biology.Nature Reviews Microbiology, 9 (6), 452-466.
doi:10.1038/nrmicro2575