Please note: Importing new articles from Word documents is currently unavailable. We are working on fixing this issue soon and apologize for any inconvenience.

loading page

Comparison of FFT and marginal spectra by Hilbert-Huang transform for broadband spectral analysis of EEG
  • +3
  • Eduardo Arrufat-Pié,
  • Mario Estévez-Báez,
  • José Estévez-Carreras,
  • Calixto Machado-Curbelo,
  • Gerry Leisman,
  • Carlos Beltrán
Eduardo Arrufat-Pié
Hospital Comandante Manuel Fajardo

Corresponding Author:[email protected]

Author Profile
Mario Estévez-Báez
Instituto de Neurologia y Neurocirugia
Author Profile
José Estévez-Carreras
Hospital Militar Dr. Luis Díaz Soto
Author Profile
Calixto Machado-Curbelo
Instituto de Neurologia y Neurocirugia
Author Profile
Gerry Leisman
University of Haifa
Author Profile
Carlos Beltrán
Instituto de Neurologia y Neurocirugia
Author Profile

Abstract

Goal: Fast Fourier transform (FFT), has been the main tool for EEG spectral analysis (SPA). As EEG can show nonlinear and non-stationary behavior, FFT may at times be meaningless. A novel method was developed for analyzing nonlinear and non-stationary signals using the Hilbert-Huang transform. Methods: We compared spectral analyses of EEG using FFT with Hilbert marginal spectra (HMS) with a multivariate empirical mode decomposition algorithm. Segments of continuous 60-sec EEGs recorded from 19 leads of 47 healthy volunteers were studied. Results: HMS showed a reduction of the alpha activity (-5.64%), with increments in the beta-1 (+1.67%), and gamma (+1.38%) fast activity bands, an increment in theta (+2.14%), and in delta (+0.45%) bands, and vice versa for the FFT method. For weighted mean frequencies, insignificant mean differences (lower than 1Hz) were observed between both methods for delta, theta, alpha, beta-1 and beta-2 bands, and only for gamma band values. The HMS were 3 Hz higher than the FFT method. Conclusion: HMS may be considered a good alternative for SPA of the EEG when nonlinearity or non-stationarity may be present.
04 Aug 2020Submitted to Engineering Reports
04 Aug 2020Submission Checks Completed
04 Aug 2020Assigned to Editor
16 Sep 2020Reviewer(s) Assigned
26 Oct 2020Editorial Decision: Revise Major
30 Dec 20201st Revision Received
31 Dec 2020Submission Checks Completed
31 Dec 2020Assigned to Editor
05 Jan 2021Editorial Decision: Revise Minor
05 Jan 20212nd Revision Received
05 Jan 2021Submission Checks Completed
05 Jan 2021Assigned to Editor
05 Jan 2021Editorial Decision: Accept
Feb 2021Published in Engineering Reports. 10.1002/eng2.12367