References
Afre, R.A., Sharma, N., Sharon, M. & Sharo, M. (2018). Transparent
Conducting Oxide Films for Various Applications: A Review. Reviews
on Advanced Materials Science, 53(1), 79-89. doi:10.1515/rams-2018-0006
Betz, Т., Bakowsky, U., Müller, M.R., Lehr, C.M. & Bernhardt, I.
(2007). Conformational change of membrane proteins leads to shape
changes of red blood cells. Bioelectrochemistry, 70(1), 122-126.
doi:10.1016/j.bioelechem.2006.03.019
Bi, Y.G., Liu, Y.F., Zhang, X.L., Yin, D., Wang, W.Q., Feng, J. & Sun,
H.B. (2019). Ultrathin Metal Films as the Transparent Electrode in
ITO‐Free Organic Optoelectronic Devices. Advanced Optical
Materials, 7(6), Article 1800778. doi:10.1002/adom.201800778
Bifano, E.M., Novak, T.S. & Freedman, J.C. (1984). Relationship between
the shape and the membrane potential of human red blood cells. The
Journal of Membrane Biology, 82(1), 1-13. doi:10.1007/bf01870727
Bond, D.R. & Lovley, D.R. (2003). Electricity production byGeobacter sulfurreducens attached to electrodes. Applied
and environmental microbiology, 69(3), 1548-1555.
doi:10.1128/AEM.69.3.1548-1555.2003
Busalmen, J.P. & de Sánchez, S.R. (2005). Electrochemical
Polarization-Induced Changes in the Growth of Individual Cells and
Biofilms of Pseudomonas fluorescens (ATCC 17552). Applied
and Environmental Microbiology, 71(10), 6235-6240.
doi:10.1128/AEM.71.10.6235-6240.2005
Cao, W., Li, J., Chen, H. & Xue, J. (2014). Transparent electrodes for
organic optoelectronic devices: a review. Journal of Photonics for
Energy, 4(1), Article 040990. doi:10.1117/1.JPE.4.040990
Choi, C.K., English, A.E., Jun, S.I., Kihm, K.D., Rack, P.D. (2007). An
endothelial cell compatible biosensor fabricated using optically thin
indium tin oxide silicon nitride electrodes. Biosensors and
Bioelectronics, 22(11), 2585-2590. doi:10.1016/j.bios.2006.10.006
Choi, C.K., English, A.E., Kihm, K.D. & Margraves, C.H. (2007).
Simultaneous dynamic optical and electrical properties of endothelial
cell attachment on indium tin oxide bioelectrodes. Journal of
Biomedical Optics, 12(6), Article 064028. doi:10.1117/1.2821407
Djokić, S. (Ed.). (2016). Biomedical and Pharmaceutical
Applications of Electrochemistry. Springer International Publishing.
doi:10.1007/978-3-319-31849-3
Ellmer, K. (2012). Past achievements and future challenges in the
development of optically transparent electrodes. Nature Photonics,
6, 809-817. DOI: 10.1038/nphoton.2012.282
Enomoto, J., Mochizuki, N., Ebisawa, K., Osaki, T., Kageyama, T.,
Myasnikova, D., … Fukuda, J. (2016). Engineering thick cell
sheets by electrochemical desorption of oligopeptides on membrane
substrates. Regenerative therapy, 3, 24-31.
doi:10.1016/j.reth.2015.12.003
Gingell, D. & Fornes, J.A. (1976). Interaction of red blood cells with
a polarized electrode: evidence of long-range intermolecular forces.Biophysical journal, 16(10), 1131-1153.
doi:10.1016/S0006-3495(76)85763-3
Glaser, R. (1993). Mechanisms of electromechanical coupling in membranes
demonstrated by transmembrane potential-dependent shape transformations
of human erythrocytes. Bioelectrochemistry and Bioenergetics, 30,103-109. doi:10.1016/0302-4598(93)80067-5
Goldin, M.M., Volkov, A.G., Goldfarb, Y.S. & Goldin, Michael M. (2006).
Electrochemical Aspects of Hemosorption. Journal of
Electrochemical Society, 153(8), J91-J99. doi:10.1149/1.2208910
Goldin, Mark M., Goroncharovskaya, I.V., Evseev, A.K., Shabanov, A.K.,
Goldin, Mikhael M. & Petrikov S.S. (2019). Electrochemical Properties
of Erythrocytes as a Reflection of Their Morphology and Interaction with
Foreign Electrically Conductive Materials. In K. Jorissen (Ed.),Erythrocytes: Structure, Functions and Clinical Aspects (pp.
133-160). NY: Nova Science Publishers.
Gratieri, T., Santer, V. & Kalia, Y.N. (2017). Basic principles and
current status of transcorneal and transscleral iontophoresis.Expert Opinion on Drug Delivery, 14(9), 1091-1102.
doi:10.1080/17425247.2017.1266334
Hofmann, A.I., Cloutet, E. & Hadziioannou, G. (2018). Materials for
Transparent Electrodes: From Metal Oxides to Organic Alternatives.Advanced Optical Materials, 4(10), Article 1700412.
doi:10.1002/aelm.201700412
Inaba, R., Khademhosseini, A., Suzuki, H. & Fukuda, J. (2019).
Electrochemical desorption of self-assembled monolayers for engineering
cellular tissues. Biomaterials, 30(21), 3573-3579.
doi:10.1016/j.biomaterials.2009.03.045
Jahnke, H.G., Rothermel, A., Sternberger, I., Mack T.G.A., Kurz R.G.,
Pänke O., … Robitzki, A.A. (2009). An impedimetric
microelectrode-based array sensor for label-free detection of tau
hyperphosphorylation in human cells. Lab on a chip, 9(10),1422-1428. doi:10.1039/b819754g
Jahnke, H.G., Schmidt, S., Frank, R., Weigel, W., Prönnecke, C. &
Robitzki, A.A. (2019). FEM-based design of optical transparent indium
tin oxide multielectrode arrays for multiparametric, high sensitive cell
based assays. Biosensors and Bioelectronics, 129, 208-215.
doi:10.1016/j.bios.2018.09.095
Jiang, X., Ferrigno, R., Mrksich, M. & Whitesides, G.M. (2003).
Electrochemical desorption of self-assembled monolayers noninvasively
releases patterned cells from geometrical confinements. Journal of
American Chemical Society, 125(9), 2366-2367. doi:10.1021/ja029485c
Jin, L.H., Yang, B.Y., Zhang, L., Lin, P.L., Cui, C. & Tang, J. (2009).
Patterning of HeLa Cells on a Microfabricated Au-Coated ITO Substrate.Langmuir, 25(9), 5380-5383. doi:10.1021/la804297x
Khubutiya, M.Sh., Goldin, M.M., Stepanov, A.A., Kolesnikov, V.A. &
Kruglikov S.S. (2012). The effect of electrochemically polymerized
pyrrole on the physicochemical properties and biological activity of
carbon materials. Carbon, 50(3), 1146-1151.
doi:10.1016/j.carbon.2011.10.027
Kobayashi, Y., Cordonier, C.E.J., Noda, Y., Nagase, F., Enomoto, J.,
Kageyama, T., … Fukuda, J. (2019). Tailored cell sheet
engineering using microstereolithography and electrochemical cell
transfer. Scientific Reports, 9(1), Article 10415.
doi:10.1038/s41598-019-46801-9
Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. &
Morioka, S. (1991). Electrically controlled proliferation of human
carcinoma cells cultured on the surface of an electrode. Journal
of Biotechnology, 18(1-2), 129-139. doi:10.1016/0168-1656(91)90241-M
Kojima, J., Shinohara, H., Ikariyama, Y., Aizawa, M., Nagaike, K. &
Morioka, S. (1992). Electrically promoted protein production by
mammalian cells cultured on the electrode surface. Biotechnology
and Bioengineering, 39(1), 27-32. doi:10.1002/bit.260390106
Koyama, S., Haruyama, T., Kobatake, E. & Aizawa, M. (1997).
Electrically induced NGF production by astroglial cells. Nature
Biotechnology, 15, 164-166. doi:10.1038/nbt0297-164
Koyama, S. (2011). Electrically modulated attachment and detachment of
animal cells cultured on an optically transparent patterning electrode.Journal of Bioscience and Bioengineering, 111(5), 574-583.
doi:10.1016/j.jbiosc.2010.12.027
Koyama, S., Tsubouchi, T., Usui, K., Uematsu, K., Tame, A., Nogi, Y.,
… Abe, F. (2015). Involvement of flocculin in negative
potential-applied ITO electrode adhesion of yeast cells. FEMS
Yeast Research, 15(6), Article fov064. doi:10.1093/femsyr/fov064
López-Naranjo, E.J., González-Ortiz, L.J., Apátiga, L.M., Rivera-Muñoz,
E.M. & Manzano-Ramírez, A. (2016). Transparent Electrodes: A Review of
the Use of Carbon-Based Nanomaterials. Journal of Nanomaterials,
2016, Article 4928365. doi:10.1155/2016/4928365
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A.
& Bond, D.R. (2008). Shewanella secretes flavins that mediate
extracellular electron transfer. Proceedings of the National
Academy of Sciences of the United States of America, 105(10),3968-3973. doi:10.1073/pnas.0710525105
Mukhopadhyay, M., Ghosh, U.U., Sarkar, D. & DasGupta, S. (2018).
Surface Property Induced Morphological Alterations of Human Erythrocyte.Soft Matter, 14(36), 7335-7346. doi:10.1039/C8SM01146J
Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P.,
Näslund, I., …Olsson, J.M. (2000). Electrochemical treatment of
tumours. Bioelectrochemistry, 51(1), 1-11.
doi:10.1016/s0302-4598(99)00073-2
Pänke, O., Weigel, W., Schmidt, S., Steude, A. & Robitzki, A.A. (2011).
A cell-based impedance assay for monitoring transient receptor potential
(TRP) ion channel activity. Biosensors and Bioelectronics, 26(5),2376-2382. doi:10.1016/j.bios.2010.10.015
Sawyer, P.N., Srinivasan, S., Stanczewski, B., Ramasamy, N., & Ramsey,
W. (1974). Electrochemical Aspects of
Thrombogenesis—Bioelectrochemistry Old and New. Journal of The
Electrochemical Society, 121(7), 221C-234C. doi:10.1149/1.2402384
Saywer, P.N., Brattain, W.H. & Boddy, P.J. (1964). Electrochemical
precipitation of human blood cells and its possible relation to
intravascular thrombosis. Proceedings of the National Academy of
Sciences of the United States of America, 51(3), 428-432.
doi:10.1073/pnas.51.3.428
Schmitt, J.M., Baer, M., Meindl, J.D., Anderson, M.F. & Mihm, F.G.
(1984). Inhibition of thrombus formation on intravascular sensors by
electrical polarization. Journal of biomedical materials research,
18(7), 797-807. doi:10.1002/jbm.820180710
Scott, K. & Yu, E.H. (Eds.). (2015). Microbial Electrochemical
and Fuel Cells. Fundamentals and Applications . Cambridge: Woodhead
Publishing. doi:10.1016/C2014-0-01767-4
Sheets, M.P. & Singer, S.J. (1974). Biological membranes as bilayer
couples. A mechanism of drug erythrocyte interaction. Proceedings
of the National Academy of Sciences of the United States of America,
71(11), 4457-4461. doi:10.1073/pnas.71.11.4457
Sun, K., Jiang, B. & Jiang, X. (2011). Electrochemical desorption of
self-assembled monolayers and its applications in surface chemistry and
cell biology. Journal of Electroanalytical Chemistry, 656(1-2),223-230. doi:10.1016/j.jelechem.2010.11.008
Tachev, K.D., Danov, K.D. & Kralchevsky, P.A. (2004). On the Mechanism
of Stomatocyte-Echinocyte Transformations of Red Blood Cells: Experiment
and Theoretical Model. Colloids and surfaces. B, Biointerfaces,
34(2), 123-140. doi:10.1016/j.colsurfb.2003.12.011
Tsivadze, A.Yu., Khubutiya, M.Sh., Goroncharovskaya, I.V., Evseev, A.K.,
Goldin, Michael M., Borovkova, N.V., … Goldin, Mark M. (2017).
Electron transport and morphological changes in the
electrode/erythrocyte system. Mendeleev Communications, 27(2),183-185. doi:10.1016/j.mencom.2017.03.026
Tsivadze, A.Yu., Khubutiya, M.Sh., Evseev, A.K., Goroncharovskaya, I.V.,
Borovkova, N.V., Shapiro, A.I., … Goldin, M.M. (2017).
Electrochemical Activity and Morphology of Human Erythrocytes at
Optically Transparent ITO Electrode. Doklady Physical Chemistry,
477(1), 201-204. doi:10.1134/S0012501617110021
Volfkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E.
& Goldin, M.M. (2017). The Effect of Electrochemical Modification of
Activated Carbons by Polypyrrole on Their Structure Characteristics,
Composition of Surface Compounds, and Adsorption. Russian Journal
of Electrochemistry, 53(12), 1334-1344. doi:10.1134/S1023193517120126
Wong, J.Y., Langer, R. & Ingber D.E. (1994). Electrically conducting
polymers can noninvasively control the shape and growth of mammalian
cells. Proceedings of the National Academy of Sciences of the
United States of America, 91(8), 3201-3204. doi:10.1073/pnas.91.8.3201
Woo, Y.S. (2019). Transparent Conductive Electrodes Based on
Graphene-Related Materials. Micromachines (Basel), 10(1), Article
13. doi:10.3390/mi10010013
Yaoita, M., Aizawa, M. & Ikariyama, Y. (1989). Electrically Regulated
Cellular Morphological and Cytoskeletal Changes on an Optically
Transparent Electrode. Experimental Cell Biology, 57(1), 43-51.
doi:10.1159/000163506
Yaoita, M., Ikariyama, Y., Aizawa, M. (1990). Electrical effects on the
proliferation of living HeLa cells cultured on optically transparent
electrode surface. Journal of Biotechnology, 14(3-4), 321-332.
doi:10.1016/0168-1656(90)90116-S
Yaoita, M., Shinohara, H., Aizawa, M., Hayakawa, Y., Yamashita, T. &
Ikariyama Y. (1988). Potential-controlled morphological change and lysis
of HeLa cells cultured on an electrode surface.Bioelectrochemistry and Bioenergetics, 20(1-3), 169-177.
doi:10.1016/S0302-4598(98)80014-7