References
Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering, 124 (2), 133-142. doi:10.1016/j.jbiosc.2017.03.009
Babazadeh, R., Lahtvee, P. J., Adiels, C. B., Goksor, M., Nielsen, J. B., & Hohmann, S. (2017). The yeast osmostress response is carbon source dependent. Scientific Reports, 7 (1), 990. doi:10.1038/s41598-017-01141-4
Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26 (1), 89-105. doi:10.1016/j.biotechadv.2007.09.002
Bai, F. W., Chen, L. J., Anderson, W. A., & Moo-Young, M. (2004). Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnology and Bioengineering, 88 (5), 558-566. doi:10.1002/bit.20221
Bai, F. W., Chen, L. J., Zhang, Z., Anderson, W. A., & Moo-Young, M. (2004). Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of Biotechnology, 110 (3), 287-293. doi:10.1016/j.jbiotec.2004.01.017
Bai, F. W., Ge, X. M., Anderson, W. A., & Moo-Young, M. (2009). Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation.Biotechnology and Bioengineering, 102 (1), 113-121. doi:10.1002/bit.22043
Boiteux, A., Goldbeter, A., & Hess, B. (1975). Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc Natl Acad Sci U S A, 72 (10), 3829-3833. doi:10.1073/pnas.72.10.3829
Burphan, T., Tatip, S., Limcharoensuk, T., Kangboonruang, K., Boonchird, C., & Auesukaree, C. (2018). Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Scientific Reports, 8 (1), 13069. doi:10.1038/s41598-018-31558-4
Caspeta, L., Castillo, T., & Nielsen, J. (2015). Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Frontiers in Bioengineering and Biotechnology, 3 , 184. doi:10.3389/fbioe.2015.00184
Chin, S. L., Marcus, I. M., Klevecz, R. R., & Li, C. M. (2012). Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS Journal, 279 (6), 1119-1130. doi:10.1111/j.1742-4658.2012.08508.x
Ewald, J. C., Kuehne, A., Zamboni, N., & Skotheim, J. M. (2016). The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Molecular Cell, 62 (4), 532-545. doi:10.1016/j.molcel.2016.02.017
Gustavsson, A. K., van Niekerk, D. D., Adiels, C. B., Kooi, B., Goksor, M., & Snoep, J. L. (2014). Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells. FEBS Journal, 281 (12), 2784-2793. doi:10.1111/febs.12820
Han, C., Yang, R., Sun, Y., Liu, M., Zhou, L., & Li, D. (2020). Identification and Characterization of a Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme for Synergistic Effect With Commercial Cellulase on Pretreated Wheat Straw Degradation. Frontiers in Bioengineering and Biotechnology, 8 , 296. doi:10.3389/fbioe.2020.00296
Heinisch, J. J., Boles, E., & Timpel, C. (1996). A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. Journal of Biological Chemistry, 271 (27), 15928-15933. doi:10.1074/jbc.271.27.15928
Kircher, M. (2015). Sustainability of biofuels and renewable chemicals production from biomass. Current Opinion in Chemical Biology, 29 , 26-31. doi:10.1016/j.cbpa.2015.07.010
Klein, M., Swinnen, S., Thevelein, J. M., & Nevoigt, E. (2017). Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environmental Microbiology, 19 (3), 878-893. doi:10.1111/1462-2920.13617
Lam, F. H., Ghaderi, A., Fink, G. R., & Stephanopoulos, G. (2014). Biofuels. Engineering alcohol tolerance in yeast. Science, 346 (6205), 71-75. doi:10.1126/science.1257859
Li, L., Ye, Y., Pan, L., Zhu, Y., Zheng, S., & Lin, Y. (2009). The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses.Biochemical and Biophysical Research Communications, 387 (4), 778-783. doi:10.1016/j.bbrc.2009.07.113
Litsios, A., Ortega, A. D., Wit, E. C., & Heinemann, M. (2018). Metabolic-flux dependent regulation of microbial physiology. Current Opinion in Microbiology, 42 , 71-78. doi:10.1016/j.mib.2017.10.029
Liu, C. G., Xiao, Y., Xia, X. X., Zhao, X. Q., Peng, L., Srinophakun, P., & Bai, F. W. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions.Biotechnology Advances, 37 (3), 491-504. doi:10.1016/j.biotechadv.2019.03.002
Muhlhofer, M., Berchtold, E., Stratil, C. G., Csaba, G., Kunold, E., Bach, N. C., . . . Buchner, J. (2019). The Heat Shock Response in Yeast Maintains Protein Homeostasis by Chaperoning and Replenishing Proteins. Cell Reports, 29 (13), 4593-4607 e4598. doi:10.1016/j.celrep.2019.11.109
Olsen, L. F., Stock, R. P., & Bagatolli, L. A. (2020). Glycolytic oscillations and intracellular K(+) concentration are strongly coupled in the yeast Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 681 , 108257. doi:10.1016/j.abb.2020.108257
Panda, S. (2016). Circadian physiology of metabolism. Science, 354 (6315), 1008-1015. doi:10.1126/science.aah4967
Papagiannakis, A., Niebel, B., Wit, E. C., & Heinemann, M. (2017). Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle. Molecular cell, 65 (2), 285-295. doi:10.1016/j.molcel.2016.11.018
Patnaik, P. R. (2003). Oscillatory metabolism of Saccharomyces cerevisiae: an overview of mechanisms and models. Biotechnology Advances, 21 (3), 183-192. doi:10.1016/S0734-9750(03)00022-3
Puligundla, P., Smogrovicova, D., Obulam, V. S., & Ko, S. (2011). Very high gravity (VHG) ethanolic brewing and fermentation: a research update. Journal of Industrial Microbiology & Biotechnology, 38 (9), 1133-1144. doi:10.1007/s10295-011-0999-3
Richard, P. (2003). The rhythm of yeast. FEMS Microbiology Reviews, 27 (4), 547-557. doi:10.1016/S0168-6445(03)00065-2
Thoke, H. S., Olsen, L. F., Duelund, L., Stock, R. P., Heimburg, T., & Bagatolli, L. A. (2018). Is a constant low-entropy process at the root of glycolytic oscillations?Journal of Biological Physics, 44 (3), 419-431. doi:10.1007/s10867-018-9499-2
Tu, B. P., Mohler, R. E., Liu, J. C., Dombek, K. M., Young, E. T., Synovec, R. E., & McKnight, S. L. (2007). Cyclic changes in metabolic state during the life of a yeast cell.Proceedings of the National Academy of Sciences of the United States of America, 104 (43), 16886-16891. doi:10.1073/pnas.0708365104
Udom, N., Chansongkrow, P., Charoensawan, V., & Auesukaree, C. (2019). Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 85 (15). doi:10.1128/AEM.00551-19
Wang, L., Zhao, X. Q., Xue, C., & Bai, F. W. (2013). Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnology for Biofuels, 6 (1), 133. doi:10.1186/1754-6834-6-133