References
Auesukaree, C. (2017). Molecular
mechanisms of the yeast adaptive response and tolerance to stresses
encountered during ethanol fermentation. Journal of Bioscience and
Bioengineering, 124 (2), 133-142. doi:10.1016/j.jbiosc.2017.03.009
Babazadeh, R., Lahtvee, P. J., Adiels,
C. B., Goksor, M., Nielsen, J. B., & Hohmann, S. (2017). The yeast
osmostress response is carbon source dependent. Scientific
Reports, 7 (1), 990. doi:10.1038/s41598-017-01141-4
Bai, F. W., Anderson, W. A., &
Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and
starch feedstocks. Biotechnology Advances, 26 (1), 89-105.
doi:10.1016/j.biotechadv.2007.09.002
Bai, F. W., Chen, L. J., Anderson, W.
A., & Moo-Young, M. (2004). Parameter oscillations in a very high
gravity medium continuous ethanol fermentation and their attenuation on
a multistage packed column bioreactor system. Biotechnology and
Bioengineering, 88 (5), 558-566. doi:10.1002/bit.20221
Bai, F. W., Chen, L. J., Zhang, Z.,
Anderson, W. A., & Moo-Young, M. (2004). Continuous ethanol production
and evaluation of yeast cell lysis and viability loss under very high
gravity medium conditions. Journal of Biotechnology, 110 (3),
287-293. doi:10.1016/j.jbiotec.2004.01.017
Bai, F. W., Ge, X. M., Anderson, W.
A., & Moo-Young, M. (2009). Parameter oscillation attenuation and
mechanism exploration for continuous VHG ethanol fermentation.Biotechnology and Bioengineering, 102 (1), 113-121.
doi:10.1002/bit.22043
Boiteux, A., Goldbeter, A., & Hess,
B. (1975). Control of oscillating glycolysis of yeast by stochastic,
periodic, and steady source of substrate: a model and experimental
study. Proc Natl Acad Sci U S A, 72 (10), 3829-3833.
doi:10.1073/pnas.72.10.3829
Burphan, T., Tatip, S., Limcharoensuk,
T., Kangboonruang, K., Boonchird, C., & Auesukaree, C. (2018).
Enhancement of ethanol production in very high gravity fermentation by
reducing fermentation-induced oxidative stress in Saccharomyces
cerevisiae. Scientific Reports, 8 (1), 13069.
doi:10.1038/s41598-018-31558-4
Caspeta, L., Castillo, T., & Nielsen,
J. (2015). Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol
Production Processes. Frontiers in Bioengineering and
Biotechnology, 3 , 184. doi:10.3389/fbioe.2015.00184
Chin, S. L., Marcus, I. M., Klevecz,
R. R., & Li, C. M. (2012). Dynamics of oscillatory phenotypes in
Saccharomyces cerevisiae reveal a network of genome-wide transcriptional
oscillators. FEBS Journal, 279 (6), 1119-1130.
doi:10.1111/j.1742-4658.2012.08508.x
Ewald, J. C., Kuehne, A., Zamboni,
N., & Skotheim, J. M. (2016). The Yeast Cyclin-Dependent Kinase Routes
Carbon Fluxes to Fuel Cell Cycle Progression. Molecular Cell,
62 (4), 532-545. doi:10.1016/j.molcel.2016.02.017
Gustavsson, A. K., van Niekerk, D.
D., Adiels, C. B., Kooi, B., Goksor, M., & Snoep, J. L. (2014).
Allosteric regulation of phosphofructokinase controls the emergence of
glycolytic oscillations in isolated yeast cells. FEBS Journal,
281 (12), 2784-2793. doi:10.1111/febs.12820
Han, C., Yang, R., Sun, Y., Liu, M.,
Zhou, L., & Li, D. (2020). Identification and Characterization of a
Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme
for Synergistic Effect With Commercial Cellulase on Pretreated Wheat
Straw Degradation. Frontiers in Bioengineering and Biotechnology,
8 , 296. doi:10.3389/fbioe.2020.00296
Heinisch, J. J., Boles, E., &
Timpel, C. (1996). A yeast phosphofructokinase insensitive to the
allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic
regulation/allosteric control. Journal of Biological Chemistry,
271 (27), 15928-15933. doi:10.1074/jbc.271.27.15928
Kircher, M. (2015). Sustainability of
biofuels and renewable chemicals production from biomass. Current
Opinion in Chemical Biology, 29 , 26-31. doi:10.1016/j.cbpa.2015.07.010
Klein, M., Swinnen, S., Thevelein, J.
M., & Nevoigt, E. (2017). Glycerol metabolism and transport in yeast
and fungi: established knowledge and ambiguities. Environmental
Microbiology, 19 (3), 878-893. doi:10.1111/1462-2920.13617
Lam, F. H., Ghaderi, A., Fink, G. R.,
& Stephanopoulos, G. (2014). Biofuels. Engineering alcohol tolerance in
yeast. Science, 346 (6205), 71-75. doi:10.1126/science.1257859
Li, L., Ye, Y., Pan, L., Zhu, Y.,
Zheng, S., & Lin, Y. (2009). The induction of trehalose and glycerol in
Saccharomyces cerevisiae in response to various stresses.Biochemical and Biophysical Research Communications, 387 (4),
778-783. doi:10.1016/j.bbrc.2009.07.113
Litsios, A., Ortega, A. D., Wit, E.
C., & Heinemann, M. (2018). Metabolic-flux dependent regulation of
microbial physiology. Current Opinion in Microbiology, 42 , 71-78.
doi:10.1016/j.mib.2017.10.029
Liu, C. G., Xiao, Y., Xia, X. X.,
Zhao, X. Q., Peng, L., Srinophakun, P., & Bai, F. W. (2019). Cellulosic
ethanol production: Progress, challenges and strategies for solutions.Biotechnology Advances, 37 (3), 491-504.
doi:10.1016/j.biotechadv.2019.03.002
Muhlhofer, M., Berchtold, E.,
Stratil, C. G., Csaba, G., Kunold, E., Bach, N. C., . . . Buchner, J.
(2019). The Heat Shock Response in Yeast Maintains Protein Homeostasis
by Chaperoning and Replenishing Proteins. Cell Reports, 29 (13),
4593-4607 e4598. doi:10.1016/j.celrep.2019.11.109
Olsen, L. F., Stock, R. P., &
Bagatolli, L. A. (2020). Glycolytic oscillations and intracellular K(+)
concentration are strongly coupled in the yeast Saccharomyces
cerevisiae. Archives of Biochemistry and Biophysics, 681 , 108257.
doi:10.1016/j.abb.2020.108257
Panda, S. (2016). Circadian
physiology of metabolism. Science, 354 (6315), 1008-1015.
doi:10.1126/science.aah4967
Papagiannakis, A., Niebel, B., Wit,
E. C., & Heinemann, M. (2017). Autonomous Metabolic Oscillations
Robustly Gate the Early and Late Cell Cycle. Molecular cell,
65 (2), 285-295. doi:10.1016/j.molcel.2016.11.018
Patnaik, P. R. (2003). Oscillatory
metabolism of Saccharomyces cerevisiae: an overview of mechanisms and
models. Biotechnology Advances, 21 (3), 183-192.
doi:10.1016/S0734-9750(03)00022-3
Puligundla, P., Smogrovicova, D.,
Obulam, V. S., & Ko, S. (2011). Very high gravity (VHG) ethanolic
brewing and fermentation: a research update. Journal of Industrial
Microbiology & Biotechnology, 38 (9), 1133-1144.
doi:10.1007/s10295-011-0999-3
Richard, P. (2003). The rhythm of
yeast. FEMS Microbiology Reviews, 27 (4), 547-557.
doi:10.1016/S0168-6445(03)00065-2
Thoke, H. S., Olsen, L. F., Duelund,
L., Stock, R. P., Heimburg, T., & Bagatolli, L. A. (2018). Is a
constant low-entropy process at the root of glycolytic oscillations?Journal of Biological Physics, 44 (3), 419-431.
doi:10.1007/s10867-018-9499-2
Tu, B. P., Mohler, R. E., Liu, J. C.,
Dombek, K. M., Young, E. T., Synovec, R. E., & McKnight, S. L. (2007).
Cyclic changes in metabolic state during the life of a yeast cell.Proceedings of the National Academy of Sciences of the United
States of America, 104 (43), 16886-16891. doi:10.1073/pnas.0708365104
Udom, N., Chansongkrow, P.,
Charoensawan, V., & Auesukaree, C. (2019). Coordination of the Cell
Wall Integrity and High-Osmolarity Glycerol Pathways in Response to
Ethanol Stress in Saccharomyces cerevisiae. Applied and
Environmental Microbiology, 85 (15). doi:10.1128/AEM.00551-19
Wang, L., Zhao, X. Q., Xue, C., &
Bai, F. W. (2013). Impact of osmotic stress and ethanol inhibition in
yeast cells on process oscillation associated with continuous
very-high-gravity ethanol fermentation. Biotechnology for
Biofuels, 6 (1), 133. doi:10.1186/1754-6834-6-133