5 REFERENCES
Adlercreutz, P. (2017). Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Applied Microbiology and Biotechnology, 101 (2), 513-519. doi:10.1007/s00253-016-8055-x
Asano, Y., Mihara, Y., & Yamada, H. (1999). A novel selective nucleoside phosphorylating enzyme from Morganella morganii .Journal of Bioscience and Bioengineering, 87 (6), 732-738. doi:10.1016/S1389-1723(99)80145-5
Beerens, K., De Winter, K., Van de Walle, D., Grootaert, C., Kamiloglu, S., Miclotte, L., . . . Desmet, T. (2017). Biocatalytic synthesis of the rare sugar kojibiose: Process scale-up and application testing.Journal of Agricultural and Food Chemistry, 65 (29), 6030-6041. doi:10.1021/acs.jafc.7b02258
Bolivar, J. M., Luley-Goedl, C., Leitner, E., Sawangwan, T., & Nidetzky, B. (2017). Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. Journal of Biotechnology, 257 , 131-138. doi:10.1016/j.jbiotec.2017.01.019
Bruggink, A., Roos, E. C., & de Vroom, E. (1998). Penicillin acylase in the industrial production of β-lactam antibiotics. Organic Process Research & Development, 2 (2), 128-133. doi:10.1021/op9700643
Cleland, W. W. (1975). Partition analysis and concept of net rate constants as tools in enzyme kinetics. Biochemistry, 14 (14), 3220-3224. doi:10.1021/bi00685a029
Dirks-Hofmeister, M. E., Verhaeghe, T., De Winter, K., & Desmet, T. (2015). Creating space for large acceptors: Rational biocatalyst design for resveratrol glycosylation in an aqueous system. Angewandte Chemie International Edition, 54 (32), 9289-9292. doi:10.1002/anie.201503605
Fernandez-Lafuente, R., Rosell, C. M., & Guisan, J. M. (1998). Modulation of the properties of penicillin G acylase by acyl donor substrates during N-protection of amino compounds. Enzyme and Microbial Technology, 22 (7), 583-587. doi:10.1016/S0141-0229(98)00239-7
Franceus, J., & Desmet, T. (2020). Sucrose phosphorylase and related enzymes in glycoside hydrolase family 13: Discovery, application and engineering. International Journal of Molecular Sciences, 21 (7), 2526. doi:10.3390/ijms21072526
Giordano, R. C., Ribeiro, M. P. A., & Giordano, R. L. C. (2006). Kinetics of β-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization.Biotechnology Advances, 24 (1), 27-41. doi:10.1016/j.biotechadv.2005.05.003
Goedl, C., Sawangwan, T., Mueller, M., Schwarz, A., & Nidetzky, B. (2008). A high-yielding biocatalytic process for the production of 2-O-(α-D-glucopyranosyl)-sn -glycerol, a natural osmolyte and useful moisturizing ingredient. Angewandte Chemie International Edition, 47 (52), 10086-10089. doi:10.1002/anie.200803562
Goedl, C., Sawangwan, T., Wildberger, P., & Nidetzky, B. (2010). Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals.Biocatalysis and Biotransformation, 28 (1), 10-21. doi:10.3109/10242420903411595
Goedl, C., Schwarz, A., Minani, A., & Nidetzky, B. (2007). Recombinant sucrose phosphorylase from Leuconostoc mesenteroides : Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-D-glucose 1-phosphate.Journal of Biotechnology, 129 (1), 77-86. doi:10.1016/j.jbiotec.2006.11.019
Goedl, C., Schwarz, A., Mueller, M., Brecker, L., & Nidetzky, B. (2008). Mechanistic differences among retaining disaccharide phosphorylases: Insights from kinetic analysis of active site mutants of sucrose phosphorylase and α,α-trehalose phosphorylase.Carbohydrate Research, 343 (12), 2032-2040. doi:10.1016/j.carres.2008.01.029
Gololobov, M. Y., Borisov, I. L., Belikov, V. M., & Švedas, V. K. (1988). Acyl group transfer by proteases forming acyl–enzyme intermediate: Kinetic model analysis. Biotechnology and Bioengineering, 32 (7), 866-872. doi:10.1002/bit.260320704
Gololobov, M. Y., Petrauskas, A., Pauliukonis, R., Koschke, V., Borisov, I. L., & Švedas, V. (1990). Increased nucleophile reactivity of amino acid β-naphthylamides in α-chymotrypsin-catalyzed peptide synthesis.Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1041 (1), 71-78. doi:10.1016/0167-4838(90)90124-X
Han, R., & Coleman, J. E. (1995). Dependence of the phosphorylation of alkaline phosphatase by phosphate monoesters on the pKa of the leaving group. Biochemistry, 34 (13), 4238-4245. doi:10.1021/bi00013a013
Huber, R. E., Kurz, G., & Wallenfels, K. (1976). A quantitation of the factors which affect the hydrolase and transgalactosylase activities of β-galactosidase (E. coli ) on lactose. Biochemistry, 15 (9), 1994-2001. doi:10.1021/bi00654a029
Ishikawa, K., Mihara, Y., Shimba, N., Ohtsu, N., Kawasaki, H., Suzuki, E.-i., & Asano, Y. (2002). Enhancement of nucleoside phosphorylation activity in an acid phosphatase. Protein Engineering, Design and Selection, 15 (7), 539-543. doi:10.1093/protein/15.7.539
Kasche, V. (1986). Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme and Microbial Technology, 8 (1), 4-16. doi:10.1016/0141-0229(86)90003-7
Kato, Y., Ooi, R., & Asano, Y. (1999). A new enzymatic method of nitrile synthesis by Rhodococcus sp. strain YH3-3. Journal of Molecular Catalysis B: Enzymatic, 6 (3), 249-256. doi:10.1016/S1381-1177(98)00080-0
Klotzsch, H., & Bergmeyer, H.-U. (1965). D-fructose. In H.-U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (pp. 156-159): Academic Press.
Kraus, M., Görl, J., Timm, M., & Seibel, J. (2016). Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity. Chemical Communications, 52 (25), 4625-4627. doi:10.1039/C6CC00934D
Kruschitz, A., & Nidetzky, B. (2020). Removal of glycerol from enzymatically produced 2-α-D-glucosyl-glycerol by discontinuous diafiltration. Separation and Purification Technology, 241 , 116749. doi:10.1016/j.seppur.2020.116749
Luley-Goedl, C., & Nidetzky, B. (2010). Carbohydrate synthesis by disaccharide phosphorylases: Reactions, catalytic mechanisms and application in the glycosciences. Biotechnology Journal, 5 (12), 1324-1338. doi:10.1002/biot.201000217
Luley-Goedl, C., Sawangwan, T., Mueller, M., Schwarz, A., & Nidetzky, B. (2010). Biocatalytic process for production of α-glucosylglycerol using sucrose phosphorylase. Food Technol Biotechnol, 48 (3), 276-283.
Marsden, S. R., Mestrom, L., McMillan, D. G. G., & Hanefeld, U. (2020). Thermodynamically and kinetically controlled reactions in biocatalysis – from concepts to perspectives. ChemCatChem, 12 (2), 426-437. doi:10.1002/cctc.201901589
Mestrom, L., Claessen, J. G. R., & Hanefeld, U. (2019). Enzyme-catalyzed synthesis of esters in water. ChemCatChem, 11 (7), 2004-2010. doi:10.1002/cctc.201801991
Mirza, O., Skov, L. K., Sprogøe, D., van den Brook, L. A. M., Beldman, G., Kastrup, J. S., & Gajhede, M. (2006). Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. Journal of Biological Chemistry, 281 (46), 35576–35584. doi:10.1074/jbc.M605611200
Mueller, M., & Nidetzky, B. (2007). The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis. FEBS Letters, 581 (7), 1403-1408. doi:10.1016/j.febslet.2007.02.060
Müller, H., Becker, A.-K., Palm, G. J., Berndt, L., Badenhorst, C. P. S., Godehard, S. P., . . . Bornscheuer, U. (in press). Sequence-based prediction of promiscuous acyltransferase activity in hydrolases.Angewandte Chemie International Edition . doi:10.1002/anie.202003635
Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C., & Chong, W. T. (2016). Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Advances, 6 (65), 60034-60055. doi:10.1039/C6RA08062F
Petzelbauer, I., Reiter, A., Splechtna, B., Kosma, P., & Nidetzky, B. (2000). Transgalactosylation by thermostable β-glycosidases fromPyrococcus furiosus and Sulfolobus solfataricus .European Journal of Biochemistry, 267 (16), 5055-5066. doi:10.1046/j.1432-1327.2000.01562.x
Renirie, R., Pukin, A., van Lagen, B., & Franssen, M. C. R. (2010). Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor.Journal of Molecular Catalysis B: Enzymatic, 67 (3), 219-224. doi:10.1016/j.molcatb.2010.08.009
Schroën, C. G. P. H., Nierstrasz, V. A., Moody, H. M., Hoogschagen, M. J., Kroon, P. J., Bosma, R., . . . Tramper, J. (2001). Modeling of the enzymatic kinetic synthesis of cephalexin - Influence of substrate concentration and temperature. Biotechnology and Bioengineering, 73 (3), 171-178. doi:10.1002/bit.1049
Segel, I. H. (1993). Enzyme kinetics : Behavior and analysis of rapid equilibrium and steady-state enzyme systems . New York, NY: John Wiley & Sons.
Seibel, J., Jördening, H.-J., & Buchholz, K. (2006). Glycosylation with activated sugars using glycosyltransferases and transglycosidases.Biocatalysis and Biotransformation, 24 (5), 311-342. doi:10.1080/10242420600986811
Sio, C. F., & Quax, W. J. (2004). Improved β-lactam acylases and their use as industrial biocatalysts. Current Opinion in Biotechnology, 15 (4), 349-355. doi:10.1016/j.copbio.2004.06.006
Sklyarenko, A. V., El’darov, M. A., Kurochkina, V. B., & Yarotsky, S. V. (2015). Enzymatic synthesis of β-lactam acids (review). Applied Biochemistry and Microbiology, 51 (6), 627-640. doi:10.1134/S0003683815060150
Sprogøe, D., van den Broek, L. A. M., Mirza, O., Kastrup, J. S., Voragen, A. G. J., Gajhede, M., & Skov, L. K. (2004). Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis .Biochemistry, 43 (5), 1156-1162. doi:10.1021/bi0356395
Subileau, M., Jan, A. H., Drone, J., Rutyna, C., Perrier, V., & Dubreucq, E. (2017). What makes a lipase a valuable acyltransferase in water abundant medium? Catalysis Science & Technology, 7 (12), 2566-2578. doi:10.1039/C6CY01805J
Tasnádi, G., Staśko, M., Ditrich, K., Hall, M., & Faber, K. (2020). Preparative-scale enzymatic synthesis of rac -glycerol-1-phosphate from crude glycerol using acid phosphatases and phosphate.ChemSusChem, 13 (7), 1759-1763. doi:10.1002/cssc.201903236
Terreni, M., Tchamkam, J. G., Sarnataro, U., Rocchietti, S., Fernández-Lafuente, R., & Guisán, J. M. (2005). Influence of substrate structure on PGA-catalyzed acylations. Evaluation of different approaches for the enzymatic synthesis of cefonicid. Advanced Synthesis & Catalysis, 347 (1), 121-128. doi:10.1002/adsc.200404136
van den Broek, L. A. M., van Boxtel, E. L., Kievit, R. P., Verhoef, R., Beldman, G., & Voragen, A. G. J. (2004). Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase fromBifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 65 (2), 219-227. doi:10.1007/s00253-003-1534-x
van Rantwijk, F., Woudenberg-van Oosterom, M., & Sheldon, R. A. (1999). Glycosidase-catalysed synthesis of alkyl glycosides. Journal of Molecular Catalysis B: Enzymatic, 6 (6), 511-532. doi:10.1016/S1381-1177(99)00042-9
van Herk, T., Hartog, A. F., van der Burg, A. M., & Wever, R. (2005). Regioselective phosphorylation of carbohydrates and various alcohols by bacterial acid phosphatases; Probing the Substrate Specificity of the Enzyme from Shigella flexneri . Advanced Synthesis & Catalysis, 347 (7‐8), 1155-1162. doi:10.1002/adsc.200505072
Vera, C., Guerrero, C., Aburto, C., Cordova, A., & Illanes, A. (2020). Conventional and non-conventional applications of β-galactosidases.Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868 (1), 140271. doi:10.1016/j.bbapap.2019.140271
Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2017). Optimization of reaction conditions and the donor substrate in the synthesis of hexyl-β-D-galactoside. Process Biochemistry, 58 , 128-136. doi:10.1016/j.procbio.2017.05.005
Verhaeghe, T., De Winter, K., Berland, M., De Vreese, R., D’hooghe, M., Offmann, B., & Desmet, T. (2016). Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity. Chemical Communications, 52 (18), 3687-3689. doi:10.1039/C5CC09940D
Wildberger, P., Luley-Goedl, C., & Nidetzky, B. (2011). Aromatic interactions at the catalytic subsite of sucrose phosphorylase: Their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants.FEBS Letters, 585 (3), 499-504. doi:10.1016/j.febslet.2010.12.041
Wildberger, P., Pfeiffer, M., Brecker, L., & Nidetzky, B. (2015). Diastereoselective synthesis of glycosyl phosphates by using a phosphorylase–phosphatase combination catalyst. Angewandte Chemie International Edition, 54 (52), 15867-15871. doi:10.1002/anie.201507710
Wildberger, P., Pfeiffer, M., Brecker, L., Rechberger, G. N., Birner-Gruenberger, R., & Nidetzky, B. (2015). Phosphoryl transfer from α-D-glucose 1-phosphate catalyzed by Escherichia colisugar-phosphate phosphatases of two protein superfamily types.Applied and Environmental Microbiology, 81 (5), 1559-1572. doi:10.1128/aem.03314-14
Youshko, M. I., Chilov, G. G., Shcherbakova, T. A., & Švedas, V. K. (2002). Quantitative characterization of the nucleophile reactivity in penicillin acylase-catalyzed acyl transfer reactions. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1599 (1), 134-140. doi:10.1016/S1570-9639(02)00413-2
Zeuner, B., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2014). Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry, 62 (40), 9615-9631. doi:10.1021/jf502619p
Zhong, C., Luley-Goedl, C., & Nidetzky, B. (2019). Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase. Biotechnology and Bioengineering, 116 (9), 2146-2155. doi:10.1002/bit.27008