References
Alkanaimsh S, Corbin JM, Kailemia MJ, Karuppanan K, Rodriguez RL, Lebrilla CB, McDonald KA, Nandi S. 2019. Purification and site-specific N-glycosylation analysis of human recombinant butyrylcholinesterase from Nicotiana benthamiana. Biochem. Eng. J. 142 :58–67. https://doi.org/10.1016/j.bej.2018.11.004.
Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS, Phu ML, Arzola L, Lebrilla CB, Dandekar AM, Falk BW, Nandi S, Rodriguez RL, McDonald KA. 2016. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. Front. Plant Sci. 7 :1–13. https://doi.org/10.3389/fpls.2016.00743.
Blanch HW, Clark DS. 1997. Biochemical Engineering. Boca Raton, FL: CRC Press, Taylor & Francis Group. Chemical Industries.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 :248–254. https://doi.org/10.1016/0003-2697(76)90527-3.
Chu CC, Wang CC, Sun C, Hsu C, Yin KC, Chu CY, Bi FY. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin.18 :659–668. hhttps://doi.org/10.1360/ya1975-18-5-659.
Corbin JM, Hashimoto BI, Karuppanan K, Kyser ZR, Wu L, Roberts BA, Noe AR, Rodriguez RL, McDonald KA, Nandi S. 2016. Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures. Front. Plant Sci. 7 :412. https://doi.org/10.3389/fpls.2016.00412.
Corbin JM, Kailemia MJ, Cadieux CL, Alkanaimsh S, Karuppanan K, Rodriguez RL, Lebrilla CB, Cerasoli DM, McDonald KA, Nandi S. 2018. Purification, characterization, and N-glycosylation of recombinant butyrylcholinesterase from transgenic rice cell suspension cultures.Biotechnol. Bioeng. 115 :1301–1310. https://doi.org/10.1002/bit.26557.
Corbin JM, McNulty MJ, Macharoen K, McDonald KA, Nandi S. 2020. Techno‐economic analysis of semicontinuous bioreactor production of biopharmaceuticals in transgenic rice cell suspension cultures.Biotechnol. Bioeng. n/a :bit.27475. https://doi.org/10.1002/bit.27475.
Ellman GL, Courtney KD, Andres V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7 :88–95. https://doi.org/10.1016/0006-2952(61)90145-9.
Fox JL. 2012. First plant-made biologic approved. Nat. Biotechnol. 30 :472–472. https://doi.org/10.1038/nbt0612-472.
Gagnon M, Nagre S, Wang W, Coffman J, Hiller GW. 2019. Novel, linked bioreactor system for continuous production of biologics.Biotechnol. Bioeng. 116 :1946–1958. https://doi.org/10.1002/bit.26985.
Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res.50 :151–158. https://doi.org/10.1016/0014-4827(68)90403-5.
Huang J, Sutliff TD, Wu L, Nandi S, Benge K, Terashima M, Ralston AH, Drohan W, Huang N, Rodriguez RL. 2001. Expression and Purification of Functional Human α-1-Antitrypsin from Cultured Plant Cells.Biotechnol. Prog. 17 :126–133. https://doi.org/10.1021/bp0001516.
Huang N, Chandler J, Thomas BR, Koizumi N, Rodriguez RL. 1993. Metabolic regulation of α-amylase gene expression in transgenic cell cultures of rice (Oryza sativa L.). Plant Mol. Biol. 23 :737–747. https://doi.org/10.1007/BF00021529.
Huang T-K, McDonald KA. 2009. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J. 45 :168–184. https://doi.org/10.1016/j.bej.2009.02.008.
Imseng N, Schillberg S, Schürch C, Schmid D, Schütte K, Gorr G, Eibl D, Eibl R. 2014. Suspension Culture of Plant Cells Under Heterotrophic Conditions. In: . Ind. Scale Suspens. Cult. Living Cells . Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 224–258. https://doi.org/10.1002/9783527683321.ch07.
Katō K, Shiozawa Y, Yamada A, Nishida K, Noguchi M. 1972. A Jar Fermentor Culture of Nicotiana tabacum L. Cell Suspensions. Agric. Biol. Chem. 36 :899–902. https://doi.org/10.1007/s00253-017-8241-5.
Kolarich D, Weber A, Pabst M, Stadlmann J, Teschner W, Ehrlich H, Schwarz H-P, Altmann F. 2008. Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics8 :254–263. https://doi.org/10.1002/pmic.200700720.
Leth IK, McDonald KA. 2017. Growth kinetics and scale-up of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol.101 :4895–4903. https://doi.org/10.1007/s00253-017-8241-5.
Lockridge O. 2015. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 148 :34–46. https://doi.org/10.1016/j.pharmthera.2014.11.011.
Macharoen K, McDonald KA, Nandi S. 2020. Simplified bioreactor processes for recombinant butyrylcholinesterase production in transgenic rice cell suspension cultures. Biochem. Eng. J. In press :107751. https://doi.org/10.1016/j.bej.2020.107751.
Noguchi M, Matsumoto T, Hirata Y, Yamamoto K, Katsuyama A, Kato A, Azechi S. 1977. Plant Tissue Culture and Its Bio-technological Application. Ed. W Barz, E Reinhard, M H Zenk. Plant Tissue Cult. Its Bio-technological Appl. Berlin, Heidelberg: Springer Berlin Heidelberg 85–94 p. Proceedings in Life Sciences. https://doi.org/10.1007/978-3-642-66646-9.
Reuter LJ, Bailey MJ, Joensuu JJ, Ritala A. 2014. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Plant Biotechnol. J. 12 :402–410. https://doi.org/10.1111/pbi.12147.
Rup B, Alon S, Amit-Cohen B-C, Brill Almon E, Chertkoff R, Tekoah Y, Rudd PM. 2017. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—The taliglucerase alfa story. Ed. Raphael Schiffmann. PLoS One 12 :e0186211. https://doi.org/10.1371/journal.pone.0186211.
Santos RB, Abranches R, Fischer R, Sack M, Holland T. 2016. Putting the Spotlight Back on Plant Suspension Cultures. Front. Plant Sci.7 :297. https://doi.org/10.3389/fpls.2016.00297.
Schiel O, Berlin J. 1987. Large scale fermentation and alkaloid production of cell suspension cultures of Catharanthus roseus.Plant Cell. Tissue Organ Cult. 8 :153–161. https://doi.org/10.1007/BF00043152.
Shaaltiel Y, Tekoah Y. 2016. Plant specific N-glycans do not have proven adverse effects in humans. Nat. Biotechnol. 34 :706–708. https://doi.org/10.1038/nbt.3556.
Takayama S, Akita M. 2006. Bioengineering Aspects Of Bioreactor Application In Plant Propagation. In: Gupta, SD, Ibaraki, Y, editors.Plant Tissue Cult. Eng. Dordrecht: Springer Netherlands, pp. 83–100. https://doi.org/10.1007/978-1-4020-3694-1_5.
Tanaka H, Semba H, Jitsufuchi T, Harada H. 1988. The effect of physical stress on plant cells in suspension cultures. Biotechnol. Lett.10 :485–490. https://doi.org/10.1007/BF01027061.
Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y. 2015. Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol. J. 13 :1199–1208. https://doi.org/10.1111/pbi.12428.
Terashima M, Murai Y, Kawamura M, Nakanishi S, Stoltz T, Chen L, Drohan W, Rodriguez RL, Katoh S. 1999. Production of functional human α1-antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 52 :516–523. https://doi.org/10.1007/s002530051554.
Trexler MM, McDonald KA, Jackman AP. 2002. Bioreactor Production of Human α1-Antitrypsin Using Metabolically Regulated Plant Cell Cultures.Biotechnol. Prog. 18 :501–508. https://doi.org/10.1021/bp020299k.
Trexler MM, McDonald KA, Jackman AP. 2005. A Cyclical Semicontinuous Process for Production of Human α1-Antitrypsin Using Metabolically Induced Plant Cell Suspension Cultures. Biotechnol. Prog.21 :321–328. https://doi.org/10.1021/bp0498692.
Ulbrich B, Wiesner W, Arens H. 1985. Large-Scale Production of Rosmarinic Acid from Plant Cell Cultures of Coleus blumei Benth. In: Neumann, K-H, Barz, W, Reinhard, E, editors. Prim. Second. Metab. Plant Cell Cult. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 293–303. http://link.springer.com/10.1007/978-3-642-70717-9_28.