References
Alkanaimsh S, Corbin JM, Kailemia MJ, Karuppanan K, Rodriguez RL,
Lebrilla CB, McDonald KA, Nandi S. 2019. Purification and site-specific
N-glycosylation analysis of human recombinant butyrylcholinesterase from
Nicotiana benthamiana. Biochem. Eng. J. 142 :58–67.
https://doi.org/10.1016/j.bej.2018.11.004.
Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS,
Phu ML, Arzola L, Lebrilla CB, Dandekar AM, Falk BW, Nandi S, Rodriguez
RL, McDonald KA. 2016. Transient Expression of Tetrameric Recombinant
Human Butyrylcholinesterase in Nicotiana benthamiana. Front. Plant
Sci. 7 :1–13. https://doi.org/10.3389/fpls.2016.00743.
Blanch HW, Clark DS. 1997. Biochemical Engineering. Boca Raton, FL: CRC
Press, Taylor & Francis Group. Chemical Industries.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 72 :248–254.
https://doi.org/10.1016/0003-2697(76)90527-3.
Chu CC, Wang CC, Sun C, Hsu C, Yin KC, Chu CY, Bi FY. 1975.
Establishment of an efficient medium for anther culture of rice through
comparative experiments on the nitrogen sources. Sci. Sin.18 :659–668. hhttps://doi.org/10.1360/ya1975-18-5-659.
Corbin JM, Hashimoto BI, Karuppanan K, Kyser ZR, Wu L, Roberts BA, Noe
AR, Rodriguez RL, McDonald KA, Nandi S. 2016. Semicontinuous Bioreactor
Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell
Suspension Cultures. Front. Plant Sci. 7 :412.
https://doi.org/10.3389/fpls.2016.00412.
Corbin JM, Kailemia MJ, Cadieux CL, Alkanaimsh S, Karuppanan K,
Rodriguez RL, Lebrilla CB, Cerasoli DM, McDonald KA, Nandi S. 2018.
Purification, characterization, and N-glycosylation of recombinant
butyrylcholinesterase from transgenic rice cell suspension cultures.Biotechnol. Bioeng. 115 :1301–1310.
https://doi.org/10.1002/bit.26557.
Corbin JM, McNulty MJ, Macharoen K, McDonald KA, Nandi S. 2020.
Techno‐economic analysis of semicontinuous bioreactor production of
biopharmaceuticals in transgenic rice cell suspension cultures.Biotechnol. Bioeng. n/a :bit.27475.
https://doi.org/10.1002/bit.27475.
Ellman GL, Courtney KD, Andres V, Featherstone RM. 1961. A new and rapid
colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7 :88–95.
https://doi.org/10.1016/0006-2952(61)90145-9.
Fox JL. 2012. First plant-made biologic approved. Nat.
Biotechnol. 30 :472–472. https://doi.org/10.1038/nbt0612-472.
Gagnon M, Nagre S, Wang W, Coffman J, Hiller GW. 2019. Novel, linked
bioreactor system for continuous production of biologics.Biotechnol. Bioeng. 116 :1946–1958.
https://doi.org/10.1002/bit.26985.
Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of
suspension cultures of soybean root cells. Exp. Cell Res.50 :151–158. https://doi.org/10.1016/0014-4827(68)90403-5.
Huang J, Sutliff TD, Wu L, Nandi S, Benge K, Terashima M, Ralston AH,
Drohan W, Huang N, Rodriguez RL. 2001. Expression and Purification of
Functional Human α-1-Antitrypsin from Cultured Plant Cells.Biotechnol. Prog. 17 :126–133.
https://doi.org/10.1021/bp0001516.
Huang N, Chandler J, Thomas BR, Koizumi N, Rodriguez RL. 1993. Metabolic
regulation of α-amylase gene expression in transgenic cell cultures of
rice (Oryza sativa L.). Plant Mol. Biol. 23 :737–747.
https://doi.org/10.1007/BF00021529.
Huang T-K, McDonald KA. 2009. Bioreactor engineering for recombinant
protein production in plant cell suspension cultures. Biochem.
Eng. J. 45 :168–184.
https://doi.org/10.1016/j.bej.2009.02.008.
Imseng N, Schillberg S, Schürch C, Schmid D, Schütte K, Gorr G, Eibl D,
Eibl R. 2014. Suspension Culture of Plant Cells Under Heterotrophic
Conditions. In: . Ind. Scale Suspens. Cult. Living Cells .
Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 224–258.
https://doi.org/10.1002/9783527683321.ch07.
Katō K, Shiozawa Y, Yamada A, Nishida K, Noguchi M. 1972. A Jar
Fermentor Culture of Nicotiana tabacum L. Cell Suspensions. Agric.
Biol. Chem. 36 :899–902.
https://doi.org/10.1007/s00253-017-8241-5.
Kolarich D, Weber A, Pabst M, Stadlmann J, Teschner W, Ehrlich H,
Schwarz H-P, Altmann F. 2008. Glycoproteomic characterization of
butyrylcholinesterase from human plasma. Proteomics8 :254–263. https://doi.org/10.1002/pmic.200700720.
Leth IK, McDonald KA. 2017. Growth kinetics and scale-up of
Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol.101 :4895–4903. https://doi.org/10.1007/s00253-017-8241-5.
Lockridge O. 2015. Review of human butyrylcholinesterase structure,
function, genetic variants, history of use in the clinic, and potential
therapeutic uses. Pharmacol. Ther. 148 :34–46.
https://doi.org/10.1016/j.pharmthera.2014.11.011.
Macharoen K, McDonald KA, Nandi S. 2020. Simplified bioreactor processes
for recombinant butyrylcholinesterase production in transgenic rice cell
suspension cultures. Biochem. Eng. J. In press :107751.
https://doi.org/10.1016/j.bej.2020.107751.
Noguchi M, Matsumoto T, Hirata Y, Yamamoto K, Katsuyama A, Kato A,
Azechi S. 1977. Plant Tissue Culture and Its Bio-technological
Application. Ed. W Barz, E Reinhard, M H Zenk. Plant Tissue Cult.
Its Bio-technological Appl. Berlin, Heidelberg: Springer Berlin
Heidelberg 85–94 p. Proceedings in Life Sciences.
https://doi.org/10.1007/978-3-642-66646-9.
Reuter LJ, Bailey MJ, Joensuu JJ, Ritala A. 2014. Scale-up of
hydrophobin-assisted recombinant protein production in tobacco BY-2
suspension cells. Plant Biotechnol. J. 12 :402–410.
https://doi.org/10.1111/pbi.12147.
Rup B, Alon S, Amit-Cohen B-C, Brill Almon E, Chertkoff R, Tekoah Y,
Rudd PM. 2017. Immunogenicity of glycans on biotherapeutic drugs
produced in plant expression systems—The taliglucerase alfa story. Ed.
Raphael Schiffmann. PLoS One 12 :e0186211.
https://doi.org/10.1371/journal.pone.0186211.
Santos RB, Abranches R, Fischer R, Sack M, Holland T. 2016. Putting the
Spotlight Back on Plant Suspension Cultures. Front. Plant Sci.7 :297. https://doi.org/10.3389/fpls.2016.00297.
Schiel O, Berlin J. 1987. Large scale fermentation and alkaloid
production of cell suspension cultures of Catharanthus roseus.Plant Cell. Tissue Organ Cult. 8 :153–161.
https://doi.org/10.1007/BF00043152.
Shaaltiel Y, Tekoah Y. 2016. Plant specific N-glycans do not have proven
adverse effects in humans. Nat. Biotechnol. 34 :706–708.
https://doi.org/10.1038/nbt.3556.
Takayama S, Akita M. 2006. Bioengineering Aspects Of Bioreactor
Application In Plant Propagation. In: Gupta, SD, Ibaraki, Y, editors.Plant Tissue Cult. Eng. Dordrecht: Springer Netherlands, pp.
83–100. https://doi.org/10.1007/978-1-4020-3694-1_5.
Tanaka H, Semba H, Jitsufuchi T, Harada H. 1988. The effect of physical
stress on plant cells in suspension cultures. Biotechnol. Lett.10 :485–490. https://doi.org/10.1007/BF01027061.
Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D,
Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y. 2015. Large-scale
production of pharmaceutical proteins in plant cell culture-the protalix
experience. Plant Biotechnol. J. 13 :1199–1208.
https://doi.org/10.1111/pbi.12428.
Terashima M, Murai Y, Kawamura M, Nakanishi S, Stoltz T, Chen L, Drohan
W, Rodriguez RL, Katoh S. 1999. Production of functional human
α1-antitrypsin by plant cell culture. Appl. Microbiol.
Biotechnol. 52 :516–523.
https://doi.org/10.1007/s002530051554.
Trexler MM, McDonald KA, Jackman AP. 2002. Bioreactor Production of
Human α1-Antitrypsin Using Metabolically Regulated Plant Cell Cultures.Biotechnol. Prog. 18 :501–508.
https://doi.org/10.1021/bp020299k.
Trexler MM, McDonald KA, Jackman AP. 2005. A Cyclical Semicontinuous
Process for Production of Human α1-Antitrypsin Using Metabolically
Induced Plant Cell Suspension Cultures. Biotechnol. Prog.21 :321–328. https://doi.org/10.1021/bp0498692.
Ulbrich B, Wiesner W, Arens H. 1985. Large-Scale Production of
Rosmarinic Acid from Plant Cell Cultures of Coleus blumei Benth. In:
Neumann, K-H, Barz, W, Reinhard, E, editors. Prim. Second. Metab.
Plant Cell Cult. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.
293–303. http://link.springer.com/10.1007/978-3-642-70717-9_28.