References
Akawi, L., Srirangan, K., Liu, X.,
Moo-Young, M., & Chou, C. P. (2015). Engineering Escherichia
coli for high-level production of propionate. Journal of
Industrial Microbiology & Biotechnology , 42, 1057-1072.
Baba, T., Ara,T., Hasegawa, M., Takai,
Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L.,
& Mori, H. (2006). Construction of Escherichia coli K-12
in-frame, single-gene knockout mutants: the Keio collection.Molecular Systems Biology , 2, 1-11.
Cheng, K-K., Wang, G-Y., Zeng, J., &
Zhang, J-A. (2013). Improved Succinate Production by Metabolic
Engineering. BioMed Research International , 2013, 1-12.
Cherepanov, P. P., & Wackernagel, W.
(1995). Gene disruption in Escherichia coli : TcR and KmR
cassettes with the option of Flp-catalyzed excision of the
antibiotic-resistance determinant. Gene , 158, 9-14.
Choi, K. R., Jang, W. D., Yang, D.,
Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems Metabolic
Engineering Strategies: Integrating Systems and Synthetic Biology with
Metabolic Engineering. Trends in Biotechnology , 37, 817-837.
Ciriminna, R., Pina, C. D., Rossi, M.,
& Pagliaro, M. (2014). Understanding the glycerol market.European Journal of Lipid Science & Technology , 116, 1432-1439.
Datsenko, K. A., & Wanner, B. L.
(2000). One-step inactivation of chromosomal genes in Escherichia
coli K-12 using PCR products. Proceedings of the National Academy
of Sciences , 97, 6640-6645.
Ding, W., Weng, H., Du, G., Chen, J.,
& Kang, Z. (2017). 5-Aminolevulinic acid production from inexpensive
glucose by engineering the C4 pathway in Escherichia coli .
Journal of Industrial Microbiology & Biotechnology , 44,
1127-1135.
Guest, J. R. (1981). Partial
replacement of succinate dehydrogenase function by phage- and
plasmid-specified fumarate reductase in Escherichia coli .Journal of General Microbiology , 122, 171-179.
Ha, H-J., Lee, S-K., Ha, Y-J., &
Park, J-W. (1994). Selective Bromination of Ketones. A Convenient
Synthesis of 5-Aminolevulinic Acid. Synthetic Communications , 24,
2557-2562.
Hotta, Y., Tanaka, T., Takaoka, H.,
Takeuchi, Y., Konnai, M. (1997). Promotive effects of 5-aminolevulinic
acid on the yield of several crops. Plant Growth Regulation , 22,
109-114.
Inoue K. (2017). 5-Aminolevulinic
acid-mediated photodynamic therapy for bladder cancer.International Journal of Urology , 24, 97-101.
Jobling, M. G., & Holmes, R. K.
(1990). Construction of vectors with the p15a replicon, kanamycin
resistance, inducible lacZ alpha and pUC18 or pUC19 multiple
cloning sites. Nucleic Acids Research , 18, 5315-5316.
Juzeniene, A., Juzenas, P., Iani, V.,
& Moan, J. (2002). Topical Application of 5-Aminolevulinic Acid and its
Methylester, Hexylester and Octylester Derivatives: Considerations for
Dosimetry in Mouse Skin Model. Photochemistry & Photobiology ,
76, 329-334.
Kang, D-K., Kim, S., Chi, W. J.,
Hong, S. K., Kim, H. K., & Kim, H. U. (2004). Cloning and expression of
the Rhodobacter capsulatus hemA gene in E. coli for
the production of 5-aminolevulinic acid. Journal of Microbiology
& Biotechnology , 14, 1327-1332.
Kang, Z., Ding, W., Gong, X., Liu,
Q., Du, G., & Chen, J. (2017). Recent advances in production of
5-aminolevulinic acid using biological strategies. World Journal
of Microbiology & Biotechnology , 33, 200-207.
Kang, Z., Wang, Y., Gu, P., Wang, Q.,
& Qi, Q. (2011). Engineering Escherichia coli for efficient
production of 5-aminolevulinic acid from glucose. Metabolic
Engineering , 13, 492-498.
Kawakami, H., Ebata, T., &
Matsushita, H. (1991). A New Synthesis of 5-Aminolevulinic Acid.Agricultural & Biological Chemistry , 55, 1687-1688.
Keasling J. (2010). Manufacturing
Molecules Through Metabolic Engineering. Science (New York,
N.Y.), 330, 1355-1358.
Kirkpatrick, C., Maurer, L. M.,
Oyelakin, N. E., Yoncheva, Y. N., Maurer, R., & Slonczewski, J. L.
(2001). Acetate and formate stress: opposite responses in the proteome
of Escherichia coli . Journal of Bacteriology , 183,
6466-6477.
Li, F., Wang, Y., Gong, K., Wang, Q.,
Liang, Q., & Qi, Q. (2014). Constitutive expression of RyhB regulates
the heme biosynthesis pathway and increases the 5-aminolevulinic acid
accumulation in Escherichia coli . FEMS Microbiology
Letters , 350, 209-215.
Li, J. M., Brathwaite., O., Cosloy.,
S. D., & Russell., C. S. (1989). 5-Aminolevulinic acid synthesis inEscherichia coli . Journal of Bacteriology , 171, 2547-2552.
Li, Y., Li, Z., & Wang, L. (2016).
Applications of 5-aminolevulinic acid on the physiological and
biochemical characteristics of strawberry fruit during postharvest cold
storage. Ciência Rural , 46, 2103-2109.
MacDonald, S. (1974). Methyl
5-bromolevulinate. Canadian Journal of Chemistry , 52, 3257-3258.
Mauzerall, D., & Granick, S. (1956).
The occurrence and determination of δ-aminolevulinic acid and
porphobilinogen in urine. Journal of Biological Chemistry , 219,
435-446.
Meng, Q., Zhang, Y., Ju, X., Ma, C.,
Ma, H., Chen, J., Zheng, P., Sun, J., Zhu, J., Ma, Y., Zhao, X., &
Chen, T. (2016). Production of 5-aminolevulinic acid by cell free
multi-enzyme catalysis. Journal of Biotechnology , 226, 8-13.
Miller, J. H. (1992). A short course
in bacterial genetics: a laboratory manual and handbook forEscherichia coli and related bacteria. NY: Cold Spring Harbor
Laboratory Press.
Murarka, A., Dharmadi, Y., Yazdani,
S. S., Gonzalez, R. (2008). Fermentative Utilization of Glycerol byEscherichia coli and Its Implications for the Production of Fuels
and Chemicals. Applied & Environmental Microbiology , 74,
1124-1135.
Neidhardt, F. C., Bloch, P. L.,
Smith, D. F. (1974). Culture Medium for Enterobacteria. Journal of
Bacteriology , 119, 736-747.
Nishikawa, S., Watanabe, K., Tanaka,
T., Miyachi, N., Hotta, Y., & Murooka, Y. (1999). Rhodobacter
sphaeroides mutants which accumulate 5-aminolevulinic acid under
aerobic and dark conditions. Journal of Bioscience &
Bioengineering , 87, 798-804.
Pengpumkiat, S., Koesdjojo, M.,
Rowley, E. R., Mockler, T. C., & Remcho, V. T. (2016). Rapid Synthesis
of a Long Double-Stranded Oligonucleotide from a Single-Stranded
Nucleotide Using Magnetic Beads and an Oligo Library. PloS One ,
11, 1-10.
Petříčková, K., Chroňáková, A.,
Zelenka, T., Chrudimský, T., Pospíšil, S. Petříček, M., & Krištůfek, V.
(2015). Evolution of cyclizing 5-aminolevulinate synthases in the
biosynthesis of actinomycete secondary metabolites: outcomes for genetic
screening techniques. Frontiers in Microbiology , 6, 1-15.
Qi, L. S., Larson, M. H., Gilbert, L.
A., Doudna, J. A., Weissman, J. S., Arkin, A. P., Lim, W. A. (2013).
Repurposing CRISPR as an RNA-guided platform for sequence-specific
control of gene expression. Cell , 152, 1173-1183.
Sasaki, K., Watanabe, K., Tanaka, T.,
Hotta, Y., & Nagai, S. (1995). 5-Aminolevulinic acid production byChlorella sp. during heterotrophic cultivation in the dark.World Journal of Microbiology & Biotechnology , 11, 361-362.
Sasaki, K., Watanabe, M., Tanaka, T.,
& Tanaka, T. (2002). Biosynthesis, biotechnological production and
applications of 5-aminolevulinic acid. Applied Microbiology &
Biotechnology , 58, 23-29.
Schlicke, H., Richter, A., Rothbart,
M., Brzezowski, P., Hedtke, B., & Grimm, B. (2015). Function of
Tetrapyrroles, Regulation of Tetrapyrrole Metabolism and Methods for
Analyses of Tetrapyrroles. Procedia Chemistry , 14, 171-175.
Skorokhodova, A. Y., Morzhakova, A.
A., Gulevich, A. Y., & Debabov, V. G. (2015). Manipulating pyruvate to
acetyl-CoA conversion in Escherichia coli for anaerobic succinate
biosynthesis from glucose with the yield close to the stoichiometric
maximum. Journal of Biotechnology , 214, 33-42.
Srirangan, K., Liu, X., Westbrook,
A., Akawi, L., Pyne, M. E., Moo-Young, M., & Chou, C. P. (2014).
Biochemical, genetic, and metabolic engineering strategies to enhance
coproduction of 1-propanol and ethanol in engineered Escherichia
coli . Applied Microbiology & Biotechnology , 98, 9499-9515.
Steinsiek, S., Frixel, S., Stagge,
S., & Bettenbrock, K. (2011). Characterization of E. coli MG1655
and frdA and sdhC mutants at various aerobiosis levels.Journal of Biotechnology , 154, 35-45.
Takeya, H., Ueki, H., Miyanari, S.,
Shimizu, T., & Kojima, M. (1996). A new synthesis of 5-aminolevulinic
acid via dye-sensitized oxygenation of N-furfurylphthalimide.Journal of Photochemistry and Photobiology A: Chemistry , 94,
167-171.
Thakker, C., Martinez, I., San, K.
Y., & Bennett, G. N. (2012). Succinate production in Escherichia
coli . Biotechnology Journal , 7, 213-224.
Tran, N. T., Pham, D. N., & Kim,
C-J. (2019). Production of 5-aminolevulinic Acid by RecombinantStreptomyces coelicolor Expressing hemA fromRhodobacter sphaeroides . Biotechnology & Bioprocess
Engineering , 24, 488-499.
Wang, L., Elliott, M., & Elliott, T.
(1999). Conditional Stability of the HemA Protein (Glutamyl-tRNA
Reductase) Regulates Heme Biosynthesis in Salmonella typhimurium .Journal of Bacteriology , 181, 1211-1219.
Wang, Q., Ou, M. S., Kim, Y., Ingram,
L. O., & Shanmugam, K. T. (2010). Metabolic flux control at the
pyruvate node in an anaerobic Escherichia coli strain with an
active pyruvate dehydrogenase. Applied & Environmental
Microbiology , 76, 2107-2114.
Woodard, S. I., & Dailey, H. A.
(1995). Regulation of Heme Biosynthesis in Escherichia coli .Archives of Biochemistry & Biophysics , 316, 110-115.
Yazdani, S. S., & Gonzalez, R.
(2007). Anaerobic fermentation of glycerol: a path to economic viability
for the biofuels industry. Current Opinion in Biotechnology , 18,
213-219.
Yu, X., Jin, H., Liu, W., Wang, Q.,
& Qi, Q. (2015). Engineering Corynebacterium glutamicum to
produce 5-aminolevulinic acid from glucose. Microbial Cell
Factories , 14, 1-10.
Zhang, B., & Ye, B-C. (2018).
Pathway engineering in Corynebacterium glutamicum S9114 for
5-aminolevulinic acid production. 3 Biotech , 8, 247.
Zhang, J., Kang, Z., Chen, J., & Du,
G. (2015). Optimization of the heme biosynthesis pathway for the
production of 5-aminolevulinic acid in Escherichia coli .Scientific Reports , 5, 1-7.
Zhang, J., Weng, H., Zhou, Z., Du,
G., & Kang, Z. (2019). Engineering of multiple modular pathways for
high-yield production of 5-aminolevulinic acid in Escherichia
coli . Bioresource Technology , 274, 353-360.