References
Akawi, L., Srirangan, K., Liu, X., Moo-Young, M., & Chou, C. P. (2015). Engineering Escherichia coli for high-level production of propionate. Journal of Industrial Microbiology & Biotechnology , 42, 1057-1072.
Baba, T., Ara,T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.Molecular Systems Biology , 2, 1-11.
Cheng, K-K., Wang, G-Y., Zeng, J., & Zhang, J-A. (2013). Improved Succinate Production by Metabolic Engineering. BioMed Research International , 2013, 1-12.
Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in Escherichia coli : TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene , 158, 9-14.
Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology , 37, 817-837.
Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market.European Journal of Lipid Science & Technology , 116, 1432-1439.
Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences , 97, 6640-6645.
Ding, W., Weng, H., Du, G., Chen, J., & Kang, Z. (2017). 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli . Journal of Industrial Microbiology & Biotechnology , 44, 1127-1135.
Guest, J. R. (1981). Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli .Journal of General Microbiology , 122, 171-179.
Ha, H-J., Lee, S-K., Ha, Y-J., & Park, J-W. (1994). Selective Bromination of Ketones. A Convenient Synthesis of 5-Aminolevulinic Acid. Synthetic Communications , 24, 2557-2562.
Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M. (1997). Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation , 22, 109-114.
Inoue K. (2017). 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer.International Journal of Urology , 24, 97-101.
Jobling, M. G., & Holmes, R. K. (1990). Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Research , 18, 5315-5316.
Juzeniene, A., Juzenas, P., Iani, V., & Moan, J. (2002). Topical Application of 5-Aminolevulinic Acid and its Methylester, Hexylester and Octylester Derivatives: Considerations for Dosimetry in Mouse Skin Model. Photochemistry & Photobiology , 76, 329-334.
Kang, D-K., Kim, S., Chi, W. J., Hong, S. K., Kim, H. K., & Kim, H. U. (2004). Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. Journal of Microbiology & Biotechnology , 14, 1327-1332.
Kang, Z., Ding, W., Gong, X., Liu, Q., Du, G., & Chen, J. (2017). Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of Microbiology & Biotechnology , 33, 200-207.
Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering , 13, 492-498.
Kawakami, H., Ebata, T., & Matsushita, H. (1991). A New Synthesis of 5-Aminolevulinic Acid.Agricultural & Biological Chemistry , 55, 1687-1688.
Keasling J. (2010). Manufacturing Molecules Through Metabolic Engineering. Science (New York, N.Y.), 330, 1355-1358.
Kirkpatrick, C., Maurer, L. M., Oyelakin, N. E., Yoncheva, Y. N., Maurer, R., & Slonczewski, J. L. (2001). Acetate and formate stress: opposite responses in the proteome of Escherichia coli . Journal of Bacteriology , 183, 6466-6477.
Li, F., Wang, Y., Gong, K., Wang, Q., Liang, Q., & Qi, Q. (2014). Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli . FEMS Microbiology Letters , 350, 209-215.
Li, J. M., Brathwaite., O., Cosloy., S. D., & Russell., C. S. (1989). 5-Aminolevulinic acid synthesis inEscherichia coli . Journal of Bacteriology , 171, 2547-2552.
Li, Y., Li, Z., & Wang, L. (2016). Applications of 5-aminolevulinic acid on the physiological and biochemical characteristics of strawberry fruit during postharvest cold storage. Ciência Rural , 46, 2103-2109.
MacDonald, S. (1974). Methyl 5-bromolevulinate. Canadian Journal of Chemistry , 52, 3257-3258.
Mauzerall, D., & Granick, S. (1956). The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry , 219, 435-446.
Meng, Q., Zhang, Y., Ju, X., Ma, C., Ma, H., Chen, J., Zheng, P., Sun, J., Zhu, J., Ma, Y., Zhao, X., & Chen, T. (2016). Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology , 226, 8-13.
Miller, J. H. (1992). A short course in bacterial genetics: a laboratory manual and handbook forEscherichia coli and related bacteria. NY: Cold Spring Harbor Laboratory Press.
Murarka, A., Dharmadi, Y., Yazdani, S. S., Gonzalez, R. (2008). Fermentative Utilization of Glycerol byEscherichia coli and Its Implications for the Production of Fuels and Chemicals. Applied & Environmental Microbiology , 74, 1124-1135.
Neidhardt, F. C., Bloch, P. L., Smith, D. F. (1974). Culture Medium for Enterobacteria. Journal of Bacteriology , 119, 736-747.
Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y., & Murooka, Y. (1999). Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. Journal of Bioscience & Bioengineering , 87, 798-804.
Pengpumkiat, S., Koesdjojo, M., Rowley, E. R., Mockler, T. C., & Remcho, V. T. (2016). Rapid Synthesis of a Long Double-Stranded Oligonucleotide from a Single-Stranded Nucleotide Using Magnetic Beads and an Oligo Library. PloS One , 11, 1-10.
Petříčková, K., Chroňáková, A., Zelenka, T., Chrudimský, T., Pospíšil, S. Petříček, M., & Krištůfek, V. (2015). Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Frontiers in Microbiology , 6, 1-15.
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell , 152, 1173-1183.
Sasaki, K., Watanabe, K., Tanaka, T., Hotta, Y., & Nagai, S. (1995). 5-Aminolevulinic acid production byChlorella sp. during heterotrophic cultivation in the dark.World Journal of Microbiology & Biotechnology , 11, 361-362.
Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology & Biotechnology , 58, 23-29.
Schlicke, H., Richter, A., Rothbart, M., Brzezowski, P., Hedtke, B., & Grimm, B. (2015). Function of Tetrapyrroles, Regulation of Tetrapyrrole Metabolism and Methods for Analyses of Tetrapyrroles. Procedia Chemistry , 14, 171-175.
Skorokhodova, A. Y., Morzhakova, A. A., Gulevich, A. Y., & Debabov, V. G. (2015). Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Journal of Biotechnology , 214, 33-42.
Srirangan, K., Liu, X., Westbrook, A., Akawi, L., Pyne, M. E., Moo-Young, M., & Chou, C. P. (2014). Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli . Applied Microbiology & Biotechnology , 98, 9499-9515.
Steinsiek, S., Frixel, S., Stagge, S., & Bettenbrock, K. (2011). Characterization of E. coli MG1655 and frdA and sdhC mutants at various aerobiosis levels.Journal of Biotechnology , 154, 35-45.
Takeya, H., Ueki, H., Miyanari, S., Shimizu, T., & Kojima, M. (1996). A new synthesis of 5-aminolevulinic acid via dye-sensitized oxygenation of N-furfurylphthalimide.Journal of Photochemistry and Photobiology A: Chemistry , 94, 167-171.
Thakker, C., Martinez, I., San, K. Y., & Bennett, G. N. (2012). Succinate production in Escherichia coli . Biotechnology Journal , 7, 213-224.
Tran, N. T., Pham, D. N., & Kim, C-J. (2019). Production of 5-aminolevulinic Acid by RecombinantStreptomyces coelicolor Expressing hemA fromRhodobacter sphaeroides . Biotechnology & Bioprocess Engineering , 24, 488-499.
Wang, L., Elliott, M., & Elliott, T. (1999). Conditional Stability of the HemA Protein (Glutamyl-tRNA Reductase) Regulates Heme Biosynthesis in Salmonella typhimurium .Journal of Bacteriology , 181, 1211-1219.
Wang, Q., Ou, M. S., Kim, Y., Ingram, L. O., & Shanmugam, K. T. (2010). Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Applied & Environmental Microbiology , 76, 2107-2114.
Woodard, S. I., & Dailey, H. A. (1995). Regulation of Heme Biosynthesis in Escherichia coli .Archives of Biochemistry & Biophysics , 316, 110-115.
Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology , 18, 213-219.
Yu, X., Jin, H., Liu, W., Wang, Q., & Qi, Q. (2015). Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microbial Cell Factories , 14, 1-10.
Zhang, B., & Ye, B-C. (2018). Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech , 8, 247.
Zhang, J., Kang, Z., Chen, J., & Du, G. (2015). Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli .Scientific Reports , 5, 1-7.
Zhang, J., Weng, H., Zhou, Z., Du, G., & Kang, Z. (2019). Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli . Bioresource Technology , 274, 353-360.