REFERENCES
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L.
W., Levy, J. M., Liu, D. R. (2019). Search-and-replace genome editing
without double-strand breaks or donor DNA. Nature ,576 (7785), 149-157. doi:10.1038/s41586-019-1711-4
Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR
technologies in research and beyond. Nature Biotechnology ,34 (9), 933-941. doi:10.1038/nbt.3659
Burstein, D., Harrington, L. B., Strutt, S. C., Probst, A. J.,
Anantharaman, K., Thomas, B. C., Banfield, J. F. (2017). New CRISPR-Cas
systems from uncultivated microbes. Nature , 542 (7640),
237-241. doi:10.1038/nature21059
Cai, P. J., Xiao, X., He, Y. R., Li, W. W., Chu, J., Wu, C., Yu, H. Q.
(2012). Anaerobic biodecolorization mechanism of methyl orange byShewanella oneidensis MR-1. Applied Microbiology and
Biotechnology , 93 (4), 1769-1776. doi:10.1007/s00253-011-3508-8
Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by
direct oxidation of glucose in mediatorless microbial fuel cells.Nature Biotechnology , 21 (10), 1229-1232.
doi:10.1038/nbt867
Chen, W. Z., Zhang, Y., Zhang, Y. F., Pi, Y. S., Gu, T. N., Song, L. Q.,
Ji, Q. J. (2018). CRISPR/Cas9-based genome editing in Pseudomonas
aeruginosa and cytidine deaminase-mediated base editing inPseudomonas species. iScience , 6 , 222-231.
doi:10.1016/j.isci.2018.07.024
Cheng, L., Min, D., Liu, D. F., Li, W. W., & Yu, H. Q. (2019). Sensing
and approaching toxic arsenate by Shewanella putrefaciens CN-32.Environmental Science & Technology , 53 (24), 14604-14611.
doi:10.1021/acs.est.9b05890
Cheng, Z. H., Xiong, J. R., Min, D., Cheng, L., Liu, D. F., Li, W. W.,
Yu, H. Q. (2020).
Promoting
bidirectional extracellular electron transfer of Shewanella
oneidensis MR-1 for hexavalent chromium reduction via elevating
intracellular cAMP level. Biotechnology and Bioengineering .
doi:10.1002/bit.27305
Choi, D., Lee, S. B., Kim, S., Min, B., Choi, I. G., & Chang, I. S.
(2014). Metabolically engineered glucose-utilizing Shewanellastrains under anaerobic conditions. Bioresource Technology ,154 , 59-66. doi:10.1016/j.biortech.2013.12.025
Choi, K. R., & Lee, S. Y. (2016). CRISPR technologies for bacterial
systems: Current achievements and future directions. Biotechnology
Advances , 34 (7), 1180-1209. doi:10.1016/j.biotechadv.2016.08.002
Chubiz, L. M., & Marx, C. J. (2017). Growth trade-offs accompany the
emergence of glycolytic metabolism in Shewanella oneidensis MR-1.Journal of bacteriology , 199 (11), e00827-16.
doi:10.1128/JB.00827-16
Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step,
precision cloning method with high throughput capability. PLoS
One , 3 (11), e3647. doi:10.1371/journal.pone.0003647
Flynn, J. M., Ross, D. E., Hunt, K. A., Bond, D. R., & Gralnick, J. A.
(2010). Enabling unbalanced fermentations by using engineered
electrode-interfaced bacteria. mBio , 1 (5), e00190-10.
doi:10.1128/mBio.00190-10
Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M.,
Driscoll, M. E., Gardner, T. S., Tiedje, J. M. (2008). Towards
environmental systems biology of Shewanella . Nature Reviews
Microbiology , 6 (8), 592-603. doi:10.1038/nrmicro1947
Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C.
A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to
several hundred kilobases. Nature Methods , 6 (5), 343-345.
doi:10.1038/Nmeth.1318
Gomi, N., Yoshida, S., Matsumoto, K., Okudomi, M., Konno, H., Hisabori,
T., & Sugano, Y. (2011). Degradation of the synthetic dye amaranth by
the fungus Bjerkandera adusta Dec 1: inference of the degradation
pathway from an analysis of decolorized products. Biodegradation ,22 (6), 1239-1245. doi:10.1007/s10532-011-9478-9
Han, J. C., Zhang, F., Cheng, L., Mu, Y., Liu, D. F., Li, W. W., & Yu,
H. Q. (2017). Rapid release of arsenite from roxarsone bioreduction by
exoelectrogenic bacteria. Environmental Science & Technology
Letters , 4 (8), 350-355. doi:10.1021/acs.estlett.7b00227
Hong, W., Zhang, J., Cui, G. Z., Wang, L. X., & Wang, Y. (2018).
Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium
difficile toward the understanding of pathogenesis of C.
difficile infection. ACS Synthetic Biology , 7 (6),
1588-1600. doi:10.1021/acssynbio.8b00087
Hong, Y. G., Guo, J., Xu, Z. C., Mo, C. Y., Xu, M. Y., & Sun, G. P.
(2007). Reduction and partial degradation mechanisms of
naphthylaminesulfonic azo dye amaranth by Shewanella
decolordtionis S12. Applied Microbiology and Biotechnology ,75 (3), 647-654. doi:10.1007/s00253-007-0838-7
Howard, E. C., Hamdan, L. J., Lizewski, S. E., & Ringeisen, B. R.
(2012). High frequency of glucose-utilizing mutants in Shewanella
oneidensis MR-1. FEMS Microbiology Letters , 327 (1), 9-14.
doi:10.1111/j.1574-6968.2011.02450.x
Jakociunas, T., Jensen, M. K., & Keasling, J. D. (2016). CRISPR/Cas9
advances engineering of microbial cell factories. Metabolic
Engineering , 34 , 44-59. doi:10.1016/j.ymben.2015.12.003
Kim, Y. B., Komor, A. C., Levy, J. M., Packer, M. S., Zhao, K. T., &
Liu, D. R. (2017). Increasing the genome-targeting scope and precision
of base editing with engineered Cas9-cytidine deaminase fusions.Nature Biotechnology , 35 (4), 371-376. doi:10.1038/nbt.3803
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R.
(2016). Programmable editing of a target base in genomic DNA without
double-stranded DNA cleavage. Nature , 533 (7603), 420-424.
doi:10.1038/nature17946
Li, F., Li, Y. X., Sun, L. M., Li, X. F., Yin, C. J., An, X. J., Song,
H. (2017). Engineering Shewanella oneidensis enables xylose-fed
microbial fuel cell. Biotechnology for Biofuels , 10 (1),
196. doi:10.1186/s13068-017-0881-2
Li, W. W., Yu, H. Q., & He, Z. (2014). Towards sustainable wastewater
treatment by using microbial fuel cells-centered technologies.Energy & Environmental Science , 7 (3), 911-924.
doi:10.1039/c3ee43106a
Liu, D. F., Min, D., Cheng, L., Zhang, F., Li, D. B., Xiao, X., Yu, H.
Q. (2017). Anaerobic reduction of 2,6-dinitrotoluene by Shewanella
oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB.Biotechnology and Bioengineering , 114 (4), 761-768.
doi:10.1002/bit.26212
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel
cells. Nature Reviews Microbiology , 7 (5), 375-381.
doi:10.1038/nrmicro2113
Lovley, D. R. (1991).
Dissimilatory
Fe(III) and Mn(IV) reduction. Microbiological Reviews ,55 (2), 259-287.
Luo, M. L., Leenay, R. T., & Beisel, C. L. (2016). Current and future
prospects for CRISPR-based tools in bacteria. Biotechnology and
Bioengineering , 113 (5), 930-943. doi:10.1002/bit.25851
Min, D., Cheng, L., Zhang, F., Huang, X. N., Li, D. B., Liu, D. F., Yu,
H. Q. (2017). Enhancing extracellular electron transfer ofShewanella oneidensis MR-1 through coupling improved flavin
synthesis and metal-reducing conduit for pollutant degradation.Environmental Science & Technology, 51 (9), 5082-5089.
doi:10.1021/acs.est.6b04640
Nealson, K. H., & Cox, B. L. (2002). Microbial metal-ion reduction and
Mars: extraterrestrial expectations? Current Opinion in
Microbiology , 5 (3), 296-300. doi:Doi
10.1016/S1369-5274(02)00326-0
Pinchuk, G. E., Rodionov, D. A., Yang, C., Li, X. Q., Osterman, A. L.,
Dervyn, E., Beliaev, A. S. (2009). Genomic reconstruction ofShewanella oneidensis MR-1 metabolism reveals a previously
uncharacterized machinery for lactate utilization. Proceedings of
the National Academy of Sciences of the United States of America ,106 (8), 2874-2879. doi:10.1073/pnas.0806798106
Rittmann, B. E. (2008). Opportunities for renewable bioenergy using
microorganisms. Biotechnology and Bioengineering , 100 (2),
203-212. doi:10.1002/bit.21875
Rodionov, D. A., Yang, C., Li, X. Q., Rodionova, I. A., Wang, Y. B.,
Obraztsova, A. Y., Osterman, A. L. (2010). Genomic encyclopedia of sugar
utilization pathways in the Shewanella genus. BMC
Genomics , 11 (1), 494. doi:10.1186/1471-2164-11-494
Sekar, R., Shin, H. D., & DiChristina, T. J. (2016). Activation of an
otherwise silent xylose metabolic pathway in Shewanella
oneidensis . Applied and Environmental Microbiology ,82 (13), 3996-4005.
doi:10.1128/Aem.00881-16
Serres, M. H., & Riley, M. (2006). Genomic analysis of carbon source
metabolism of Shewanella oneidensis MR-1: Predictions versus
experiments. Journal of bacteriology , 188 (13), 4601-4609.
doi:10.1128/Jb.01787-05
TerAvest, M. A., & Ajo-Franklin, C. M. (2016). Transforming
exoelectrogens for biotechnology using synthetic biology.Biotechnology and Bioengineering , 113 (4), 687-697.
doi:10.1002/bit.25723
Thuronyi, B. W., Koblan, L. W., Levy, J. M., Yeh, W. H., Zheng, C.,
Newby, G. A., Liu, D. R. (2019). Continuous evolution of base editors
with expanded target compatibility and improved activity. Nature
Biotechnology , 37 (9), 1070-1079. doi:10.1038/s41587-019-0193-0
Tong, Y. J., Whitford, C. M., Robertsen, H. L., Blin, K., Jorgensen, T.
S., Klitgaard, A. K., Lee, S. Y. (2019). Highly efficient DSB-free base
editing for streptomycetes with CRISPR-BEST. Proceedings of the
National Academy of Sciences of the United States of America ,116 (41), 20366-20375. doi:10.1073/pnas.1913493116
Wang, S. H., Dong, S., Wang, P. X., Tao, Y., & Wang, Y. (2017).
Genome
editing in Clostridium saccharoperbutylacetonicum N1-4 with the
CRISPR-Cas9 system. Applied and Environmental Microbiology ,83 (10), e00233-17.
doi:10.1128/AEM.00233-17
Wang, Y., Liu, Y., Liu, J., Guo, Y. M., Fan, L. W., Ni, X. M., Ma, Y. H.
(2018). MACBETH: Multiplex automated Corynebacterium glutamicumbase editing method. Metabolic Engineering , 47, 200-210.
doi:10.1016/j.ymben.2018.02.016
Yang, C., Rodionov, D. A., Li, X. Q., Laikova, O. N., Gelfand, M. S.,
Zagnitko, O. P., Osterman, A. L. (2006). Comparative genomics and
experimental characterization of N-acetylglucosamine utilization pathway
of Shewanella oneidensis . Journal of Biological Chemistry,281 (40), 29872-29885. doi:10.1074/jbc.M605052200
Yang, H., Gao, P., Rajashankar, K. R., & Patel, D. J. (2016).
PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas
endonuclease. Cell , 167 (7), 1814-1428.
doi:10.1016/j.cell.2016.11.053
Yang, Y., Wu, Y. C., Hu, Y. D., Cao, Y. X., Poh, C. L., Cao, B., &
Song, H. (2015). Engineering electrode-attached microbial consortia for
high-performance xylose-fed microbial fuel cell. ACS Catalysis ,5 (11), 6937-6945. doi:10.1021/acscatal.5b01733
Yin, J., Sun, L., Dong, Y., Chi, X., Zhu, W., Qi, S. H., & Gao, H.
(2013). Expression of blaA underlies unexpected
ampicillin-induced cell lysis of Shewanella oneidensis .PLoS One , 8 (3), e60460. doi:10.1371/journal.pone.0060460
Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M.,
Makarova, K. S., Essletzbichler, P., Zhang, F. (2015). Cpf1 is a single
RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell ,163 (3), 759-771. doi:10.1016/j.cell.2015.09.038